Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Resumé non technique

Rapport définitif

ARTELIA Ville & Transport
Région Réunion
121 boulevard Jean Jaurès
CS 31005
97404 SAINT-DENIS CEDEX
Tel. : 02 62 90 96 00
Fax : 02 62 90 96 01

DATE : JUILLET 2016 REF : 470 1780
<table>
<thead>
<tr>
<th>INDICE</th>
<th>OBJET DE LA MODIFICATION</th>
<th>DATE</th>
<th>VISA EMETTEUR</th>
<th>VISA DIRECTEUR BRANCHE</th>
<th>VISA DIRECTEUR QUALITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Version initiale</td>
<td>04/2016</td>
<td>TRa/BDz</td>
<td>AGx</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Version définitive</td>
<td>06/2016</td>
<td>BDz</td>
<td>AGx</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Version suite réunion pré cadrage DEAL</td>
<td>07/2016</td>
<td>AGx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOMMAIRE

1. **CONTEXTE DE L’ETUDE** ... 1
 1.1. MAITRE D’OUVRAGE ... 1
 1.2. LOCALISATION .. 1
 1.3. LE PROJET ... 4
 1.3.1. Objet du projet .. 4
 1.3.2. Caractéristiques techniques des aménagements projetés 4
 1.3.2.1. AIRES DE SECURITE EN EXTREMITE DE PISTES (RESA : RUNAWAY END SAFETY AREA) .. 4
 1.3.2.2. TRAVAUX DE PROTECTION DANS LA RIVIERE DES PLUIES ... 7
 1.3.2.3. RENFORCEMENT DES PROTECTIONS LITTORALES .. 8
 1.3.3. Calendrier de travaux 10
 1.3.4. Coût du projet .. 10
 2. **ETAT INITIAL DE L’ENVIRONNEMENT** 10
 3. **COMPATIBILITE AVEC LES SCHEMAS, PLANS ET PROGRAMMES** 13
 4. **SOLUTIONS DE SUBSTITUTION EXAMINEES ET RAISON DU CHOIX DU PROJET** 22
 4.1. LES RESA : UNE CONTRAINTE REGLEMENTAIRE 22
 4.2. JUSTIFICATION DE LA SOLUTION RETENUE ET ALTERNATIVES ETUDEES .. 23
 4.2.1. Variantes de RESA étudiées 23
 4.2.1.1. RESA 90 M .. 23
 4.2.1.2. RESA 240 M ... 34
 4.2.1.3. ANALYSE MULTICRITERES 35
 4.2.2. Variantes de protections littorales étudiées 37
 5. **ANALYSE DES EFFETS DU PROJET** 38
 5.1. SYNTHESE DES EFFETS DU PROJET 39
 5.2. EFFETS CUMULES AVEC D’AUTRES PROJETS 42
 6. **MESURES DE REDUCTION ET DE COMPENSATION** 44
 6.1. **MESURES EN PHASE TRAVAUX** 44
 6.1.1. Mesures générales de gestion environnementale de chantier .. 44
 6.1.1.1. CAHIER DES CHARGES ENVIRONNEMENTAL DU DOSSIER DE CONSULTATION DES ENTREPRISES (MG TR) .. 44
 6.1.1.2. CHARTE CHANTIER VERT 45
 6.1.1.3. INFORMATION, FORMATION ET SENSIBILISATION DU PERSONNEL (MG TR) .. 45
 6.1.1.4. SUIVI ENVIRONNEMENTAL DE CHANTIER (MS TR) .. 45
 6.1.2. Mesures liées au milieu physique 45
 6.1.2.1. MESURES LIEES AUX RISQUES DE POLLUTION DES SOLS ET DES EAUX .. 45
 6.1.2.2. MESURES LIEES A LA QUALITE DE L’EAU .. 46
 6.1.2.3. MESURES LIEES A LA GEOMORPHLOGIE ET AU TRANSIT LITTORAL .. 46
 6.1.2.4. RISQUE INONDATION - HYDRAULIQUE 47
 6.1.3. Mesures liées au milieu naturel 47
 6.1.3.1. MESURES LIEES A LA FLORE ET AUX HABITATS TERRESTRES .. 47
 6.1.3.2. MESURES LIEES A LA FAUNE TERRESTRE .. 47
 6.1.3.3. MESURES LIEES AUX MILIEUX AQUATIQUES .. 47
 6.1.4. Mesures liées au milieu humain 48
 6.1.4.1. MESURES LIEES AUX POUSSIÈRES .. 48
 6.1.4.2. MESURES LIEES AU BRUIT 48
 6.1.4.3. MESURES LIEES AU PAYSAGE .. 48
 6.1.4.4. MESURES LIEES A LA CIRCULATION .. 48
 6.1.5. Synthèse des mesures en phase chantier 49
 6.2. **MESURES DURANT L’EXPLOITATION** 53
 6.2.1. Mesures liées au milieu physique 53
6.2.1.1. MILIEU PHYSIQUE TERRESTRE .. 53
6.2.1.2. MILIEU PHYSIQUE MARIN .. 53
6.2.2. Mesures liées au milieu naturel ... 53
6.2.3. Mesures liées au milieu humain ... 53
6.2.4. Synthèse des mesures en phase exploitation ... 54

7. **ANALYSE DES METHODES D’EVALUATION – DIFFICULTES RENCONTREES** 56
 7.1. **METHODOLOGIE** .. 56
 7.1.1. Méthodologie générale de l’étude d’impact .. 56
 7.1.2. Etudes spécifiques réalisées pour le projet ... 56
 7.2. **DIFFICULTES RENCONTREES** ... 57
 7.3. **AUTEURS DE L’ETUDE** ... 57
TABLEAUX

TABL. 1 - SYNTHESE DE L'ETAT INITIAL – ENJEUX ENVIRONNEMENTAUX IDENTIFIES
TABL. 2 - COMPATIBILITE DU PROJET AVEC LES PLANS, PROGRAMMES ET DOCUMENTS DE PLANIFICATION
TABL. 3 - RAPPELS DES EXIGENCES REGLEMENTAIRES (SPECIFICATIONS DE CERTIFICATION RELATIVES AUX RESA)
TABL. 4 - TABLEAU ANALYSE MULTICRITERES – APPROCHE MILIEU TERRESTRE
TABL. 5 - TABLEAU ANALYSE MULTICRITERES – APPROCHE MILIEU MARIN
TABL. 6 - SYNTHESE DES AVANTAGES INCONVENIENTS DES SOLUTIONS RESA ETUDEES
TABL. 7 - ANALYSE MULTICRITERE PROTECTION LITTORALE (ENROCHEMENTS / BCR)
TABL. 8 - SYNTHESE DES IMPACTS POTENTIELS AVANT MESURES EN PHASE CHANTIER ET EN PHASE EXPLOITATION
TABL. 9 - LISTE DES PROJETS POUR L'ANALYSE DES EFFETS CUMULES
TABL. 10 - SYNTHESE DES IMPACTS ET MESURES EN PHASE CHANTIER
TABL. 11 - SYNTHESE DES IMPACTS ET MESURES EN PHASE EXPLOITATION

FIGURES

FIG. 1. PLAN DE SITUATION DE L'AEROPORT ROLAND GARROS DE LA REUNION
FIG. 2. AVP1 – DISTANCES DECLAREES PISTE 14-32
FIG. 3. AVP1 – DISTANCES DECLAREES PISTE 12-30
FIG. 4. EMPRISE DU LIT DE FREINAGE D'URGENCE EMASMAX POUR UNE RESA 90 M
FIG. 5. VUE EN COUPE DES OUVRAGES DE PROTECTION CONTRE L'EROSION DES BERGES DE LA RIVIERE DES PLUIES (SOURCE : ARTELIA 2015)
FIG. 6. VUE EN COUPE DE LA DIGUE DE PROTECTION LITTORALE (ARTELIA)
FIG. 7. AMENAGEMENTS PROTEGES
FIG. 8. CARTOGRAPHIE DE L'OCCUPATION DES SOLS D'APRES LE SCHEMA D'AMENAGEMENT REGIONAL 2011
FIG. 9. EXTRAIT DU SCHEMA DE MISE EN VALEUR DE LA MER 2011
FIG. 10. ESPACES RECEVANT DU PUBLIC ET ACTIVITES AUTOUR DE LA ZONE
FIG. 11. INSTALLATIONS CLASSEES POUR LA PROTECTION DE L'ENVIRONNEMENT (ICPE) ET MONUMENTS HISTORIQUES
FIG. 1. PLAN D'EXPOSITION AU Bruit DE L'AEROPORT ROLAND-GARROS APPROUVE EN 1996
FIG. 2. CARTOGRAPHIE DU PPR APPROUVE DE 2001
FIG. 3. CARTOGRAPHIE DU PPR PORTE-A-CONNAISSANCE LE 16/09/2013
FIG. 5. EMPRISE DE LA SOLUTION RESA 90 M – SEUIL 12 (SOURCE : SNIA/PEA AIX-EN-PROVENCE 2013)
FIG. 6. EMPRISE DE LA SOLUTION RESA 90 M SUR LE PORT DE SAINTE-MARIE (SOURCE : SNIA/PEA AIX-EN-PROVENCE 2013)
FIG. 8. EMPRISE DE LA SOLUTION RESA 90 M OPTIMISEE SUR LE PORT DE SAINTE-MARIE (SOURCE : SNIA/PEA AIX-EN-PROVENCE 2013)
FIG. 10. VUE EN COUPE – SCENARIO 1
FIG. 11. VUE EN PLAN – SCENARIO 1
FIG. 12. VUE EN COUPE – SCENARIO 2
FIG. 13. VUE EN PLAN – SCENARIO 2
FIG. 14. VUE EN COUPE – SCENARIO 3
FIG. 15. VUE EN PLAN – SCENARIO 3
FIG. 16. EMPRISE DE LA SOLUTION RESA 240 M SUR LE PORT DE SAINTE-MARIE (SOURCE : ARTELIA 2015)
LEXIQUE ET ABREVIATIONS

Lexique des termes aéronautiques

<table>
<thead>
<tr>
<th>Terme</th>
<th>Signification / Définition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASDA</td>
<td>Longueur utilisable pour l’accélération/arrêt</td>
</tr>
<tr>
<td>CHEA</td>
<td>Conditions d’Homologation et d’Exploitation des Aérodromes</td>
</tr>
<tr>
<td>DGAC</td>
<td>Direction Générale de l’Aviation Civile</td>
</tr>
<tr>
<td>DGITM</td>
<td>Direction Générale des Infrastructures des Transports et de la Mer</td>
</tr>
<tr>
<td>Distance déclarée</td>
<td>Distance déclarée au titre de la réglementation aéronautique</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>EMAS</td>
<td>Sorte de « lit d’arrêt » situé à l’extrémité d’une piste, composé de béton déformable léger. Lorsqu’un aéronef roule sur un lit d’EMAS, ses pneus s’enfoncent dans le béton léger et l’aéronef ralentit de manière prévisible. EMAS = « Engineered Material Arresting System ».</td>
</tr>
<tr>
<td>GLIDE-PATH</td>
<td>Radio alignement de descente</td>
</tr>
<tr>
<td>GNSS</td>
<td>Système global de navigation par satellite</td>
</tr>
<tr>
<td>ILS</td>
<td>Système d’Atterrissage aux Instruments (« Instrument Landing System »)</td>
</tr>
<tr>
<td>LDA</td>
<td>Longueur utilisable à l’atterrissage</td>
</tr>
<tr>
<td>Localizer (LOC)</td>
<td>Radio alignement de piste</td>
</tr>
<tr>
<td>MDH</td>
<td>Hauteur minimale de descente</td>
</tr>
<tr>
<td>OACI</td>
<td>Organisation de l’Aviation Civile Internationale</td>
</tr>
<tr>
<td>OFZ</td>
<td>Zone libre d’obstacles (« Obstacle Free Zone »)</td>
</tr>
<tr>
<td>RESA</td>
<td>Aires de sécurité de bout de piste (« Runaway End Safety Area »)</td>
</tr>
<tr>
<td>RNAV</td>
<td>Navigation de surface</td>
</tr>
<tr>
<td>RVR</td>
<td>Portée visuelle de piste</td>
</tr>
<tr>
<td>Seuil de piste</td>
<td>Début de la partie de la piste utilisable pour l’atterrissage</td>
</tr>
<tr>
<td>SNIA</td>
<td>Service National d’Ingénierie Aéroportuaire</td>
</tr>
<tr>
<td>SNSM</td>
<td>Société Nationale de Sauvetage en Mer</td>
</tr>
<tr>
<td>TODA</td>
<td>Longueur utilisable au décollage</td>
</tr>
<tr>
<td>TORA</td>
<td>Longueur de roulement utilisable au décollage</td>
</tr>
</tbody>
</table>
Abréviations générales

ADEME : Agence de l'environnement et de la maîtrise de l'énergie
AEP : Alimentation en Eau Potable
AOT : Autorisation d'Occupation Temporaire
ARS : Agence Régionale de Santé
BRGM : Bureau de Recherches Géologiques et Minières
CBNM : Conservatoire Botanique National de Mascarin
CIDB : Centre d'Information et de Documentation sur le Bruit
CELRL : Conservatoire de l'Espace Littoral et des Rivages Lacustres
CERTU : Centre d'études sur les réseaux, les transports, l'urbanisme
CGPPP : Code Général de la Propriété des Personnes Publiques
CSPRN : Conseil Scientifique Régional du Patrimoine Naturel
DACOI : Direction des affaires culturelles Océan Indien
DAUPI : Démarche Aménagement Urbain et Plantes Indigènes
DCE : Directive Cadre sur l'Eau
DEAL : Direction de l'Environnement, de l'Aménagement et du Logement
DPF : Domaine Public Fluvial
DRASS : Direction Régionale des Affaires Sanitaires et Sociales
DUP : Déclaration d'Utilité Publique
DOG : Document d'Orientations Générales
EBC : Espace Boisé Classé
ENRL : Espace Naturel Remarquable du Littoral
ENS : Espace Naturel Sensible
ERP : Etablissement recevant du public
FDAAPPMA : Fédération Départementale des Associations Agréées pour Pêche et la Protection du Milieu Aquatique
GES : Gaz à Effet de Serre
ICPE : Installation Classée pour la Protection de l'Environnement
INERIS : Institut national de l'environnement industriel et des risques
INSEE : Institut national de la statistique et des études économiques
INVS : Institut de veille sanitaire
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

IRIS : Îlot Regroupé pour des Indicateurs Statistiques
ITT : Infrastructure de Transport Terrestre
LAURE : Loi sur l'Air et l'Utilisation Rationnelle de l'Energie
MH : Monument Historique
ONF : Office National des Forêts
OMS : Organisation mondiale de la santé
ORA : Observatoire Réunionnais de l'Air
PADD : Projet d'Aménagement et de Développement Durable
PAE : Plan d'Assurance Environnement
PCET : Plan Climat Energie Territorial
PDU : Plan de Déplacements Urbains
PLU : Plan Local d’Urbanisme
PPA : Plan de Protection de l’Atmosphère
PPR : Plan de Prévention des Risques
PRQA : Plan régional de la qualité de l'air
PRV : Plan Régional Vélo
QD : Quotient de Danger
RRTG : Réseau Régional de Transport Guidé
SAGE : Schéma d'Aménagement et de Gestion des Eaux
SAR : Schéma d'Aménagement Régional
SCOT : Schéma de Cohérence Territoriale
SDAGE : Schéma directeur d'aménagement et de gestion des eaux
SDC : Schéma Départemental des Carrières
SDEP : Schéma Directeur des Eaux Pluviales
SEOR : Société d’Etudes Ornithologiques de la Réunion
SRCAE : Schéma Régional du climat, de l'air et de l'énergie
SRCE : Schéma Régional de Cohérence Ecologique
SREPEN : Société Réunionnaise pour l'Etude et la Protection de l'ENVironnement
SMVM : Schéma de Mise en Valeur de la Mer
TCO : Territoire de la Cote Ouest
TCSP : Transport en Commun en Site Propre
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

UICN : Union internationale pour la conservation de la nature
USEPA : United States Environmental Protection Agency (Agence de protection de l'environnement des États-Unis)
VVR : Voie Vélo Régionale
ZNIEFF : Zone Naturelle d'Intérêt Ecologique, Faunistique et Floristique
ZSR : Zone de Surveillance Renforcée
1. CONTEXTE DE L’ETUDE

1.1. MAITRE D’OUVRAGE

S.A. Aéroport de La Réunion Roland Garros
AEROPORT ROLAND GARROS
97438 SAINTE MARIE

N° SIRET : 528 194 434 00015

1.2. LOCALISATION

Situé sur la commune de Sainte-Marie, il jouxte la rivière des Pluies en limite Ouest, le littoral au Nord et le port de Sainte-Marie en limite Est. La situation géographique de l’aéroport est présentée page suivante.
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 1. Plan de situation de l’aéroport Roland Garros de la Réunion
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 1. Infrastructures existantes de l’aéroport
1.3. LE PROJET

1.3.1. Objet du projet

Dans le cadre de la nouvelle réglementation AESA (Agence Européenne de la Sécurité Aérienne), l’une des problématiques techniques de mise en conformité les plus importantes concerne la mise en place d’aires de sécurité en extrémité de pistes (ou RESA : Runaway End Safety Area). Ces aires de sécurité servent de distance de freinage pour un avion qui se poserait trop court ou trop long.

A ce sujet, la réglementation européenne impose une RESA de 90 m minimum de part et d’autre de la bande de piste. L’aéroport de la Réunion Roland Garros ne possède pas de RESA conforme à la réglementation AESA.

Des travaux de mise en conformité sont donc nécessaires afin d’obtenir la conversion de son certificat en certificat européen, au plus tard le 31 décembre 2017. Par ailleurs, il est nécessaire de réaliser des travaux de renforcement du littoral côté Nord, ce secteur pouvant s’altérer lors d’épisode de fortes houles.

Le projet s’articule donc autour de deux grands axes :

- La mise en place de RESA au niveau des deux pistes et ceci conformément à la législation internationale. Ces travaux incluent la réhabilitation d’un tronçon des digues de protection de la rivière des Pluies situé en bout de piste ;
- Le renforcement de la protection littorale vis-à-vis des houles et des submersions.

Ces deux parties du projet sont détaillées ci-après et présentés sur la Fig. 7 page 9.

1.3.2. Caractéristiques techniques des aménagements projetés

1.3.2.1. AIRES DE SECURITE EN EXTREMITE DE PISTES (RESA : RUNAWAY END SAFETY AREA)

La mise en place de RESA s’effectuera sur les 4 extrémités de pistes : les seuils 12, 14, 32 et 30.

- Sur les seuils 12, 14 et 32, l’aménagement consiste à modifier les distances de sécurité déclarées au titre de la réglementation aéronautique (allongement, décalage, déclassement). Ces modifications ne nécessitent pas de création de chaussée nouvelle, les travaux se limitent à du nivellement, du marquage au sol, l’installation de balisage nocturne et d’équipements d’aide à la navigation.

La longueur totale de la RESA sur ces seuils est la suivante :

- Seuils 12 et 14 : RESA de longueur 90 m (optimisé) ;
- Seuil 32 : RESA de longueur 240 m ;
Sur le seuil 30, jouxtant le port, l’allongement nécessaire au RESA (90 m) est tel que, pour diminuer l’emprise sur le port, un lit de freinage spécial (EMAS) a été ajouté. Il s’agit d’une technologie de matériaux permettant de réduire la longueur nécessaire au freinage.

Un EMAS est un « lit de freinage d’urgence » situé à l’extrémité d’une piste. Le lit d’EMAS est composé de béton déformable léger pour lequel le sable et le gravier sont remplacés par de l’air et de la cellulose. Le matériau ressemble à du béton, mais son poids équivaut approximativement à celui d’une éponge sèche. Lorsqu’un aéronef roule sur un lit d’EMAS, ses pneus s’enfoncent dans le béton léger et l’aéronef ralentit de manière prévisible. La sécurité de l’aéronef est garantie par le fait que l’effondrement de l’EMAS est calculé pour ne pas mettre en danger l’intégrité de l’aéronef.

Le produit mis en œuvre est nommé EMASMAX, il a été optimisé afin de réduire au maximum l’emprise sur le port. L’aménagement empiète dans le port jusqu’au quai en fond de port et à la 1ère ligne de pontons. Le quai sera reconstruit (en vert sur la figure ci-dessous).

1 En jaune : prolongement dégagé ou Clearway (CWY), zone dégagée nécessaire au décollage des avions. Le portique qui limite la hauteur des navires à l’entrée du port marque la limite actuelle de cette zone.

2 Engineered Material Arresting System.
Fig. 4. Emprise du lit de freinage d’urgence EMASMAX pour une RESA 90 m
1.3.2.2. TRAVAUX DE PROTECTION DANS LA RIVIERE DES PLUIES

Pour assurer la pérennité des travaux de RESA en bout de piste côté Rivière des Pluies, des travaux d’endiguement sont nécessaires afin de réhabiliter les ouvrages existants.

En effet, les ouvrages d’endiguement protégeant les remblais effectués dans la rivière des Pluies pour l’allongement des pistes présentent plusieurs désordres. Des travaux de confortements sont donc nécessaires pour protéger les ouvrages actuels et projetés des risques d’érosion (voir Fig. 5).

Fig. 5. Vue en coupe des ouvrages de protection contre l’érosion des berges de la rivière des Pluies (source : ARTELIA 2015)
1.3.2.3. RENFORCEMENT DES PROTECTIONS LITTORALES

Les ouvrages de protection littorale projetés répondent à la nécessité de protéger les équipements d’aide à la navigation aérienne installés au Nord (GLIDE, VOR DME et PAPI, voir Fig. 7).

La solution développée au stade Avant-Projet couvre un linéaire d’environ 1 700 m entre la protection existante et le débouché de la rivière des Pluies (voir Fig. 7). La protection sera constituée de Blocs Cubiques Rainurés (BCR).

[Diagramme de coupe de la digue de protection littorale (ARTELIA)]

Fig. 6. Vue en coupe de la digue de protection littorale (ARTELIA)
Fig. 7. Aménagements projetés
1.3.3. Calendrier de travaux

Dans l’ensemble, la durée des travaux est la suivante :

- **2,5 mois** pour les travaux aéronautiques liés aux seules RESA, au total pour les 4 extrémités de piste. La totalité de ces travaux seront réalisés à l’intérieur de la zone aéroportuaire. L’objectif est de réaliser les RESA des 4 seuils pour janvier 2018 ;

- **11 mois** pour l’extension du seuil 30 vers le port de Sainte-Marie et la mise en place du lit de freinage d’urgence EMASMAX ;

- **12 semaines** pour les travaux de réhabilitation de la digue des berges de la rivière des Pluies ;

- **5 mois** de travaux par an pendant 5 ans, pour la réalisation des 1 700 ml de digues de protection littorale. Ces aménagements seront réalisés à partir de 2018.

Les calendriers de travaux détaillés pour ces 4 types de travaux sont donnés page suivante.

1.3.4. Coût du projet

Le coût du projet, d’un **montant total de 31 409 200 € HT**, se répartit comme suit :

- **RESA : 10 642 400 € HT**, dont :
 - 1 000 000 € HT de RESA (génie-civil et balisage), total pour les 4 extrémités de pistes ;
 - 6 299 061 € HT d’aménagements liés à l’emprise de la RESA du seuil 30 dans le port de Sainte-Marie ;
 - 420 200 € HT de réhabilitation de 55 ml sur la digue de protection en rivière des Pluies ;

- **Digue de protection littorale : 20 767 000 € HT.**

2. **ETAT INITIAL DE L’ENVIRONNEMENT**

Les principaux enjeux et conclusions issus de l’état initial sont synthétisés dans le tableau ci-dessous. L’enjeu associé à chaque thème est évalué par enjeu allant d’enjeu nul à enjeu fort, déterminée selon les caractéristiques du milieu et les conséquences éventuelles sur le projet.
MILIEU PHYSIQUE

<table>
<thead>
<tr>
<th>Thèmes</th>
<th>Synthèse</th>
<th>Enjeu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climat</td>
<td>Région chaude, très ensoleillée, modérément pluvieuse, et très ventée (vents dominants d’Est Sud-Est : alizés).</td>
<td>Nul</td>
</tr>
<tr>
<td>Topographie</td>
<td>Le site est localisé sur le littoral, dans une zone plane, à une altitude comprise entre 0 et 20 m NGR.</td>
<td>Nul</td>
</tr>
<tr>
<td>Géologie</td>
<td>Coulées récentes du Piton des Neiges recoupées par des formations géologiques superficielles constituées d’alluvions fluviatiles anciennes (dans le périmètre du cône alluvial) et récentes (dans le lit de la rivière des Pluies).</td>
<td>Nul</td>
</tr>
<tr>
<td>Pédologie</td>
<td>Sols ferrallitiques, c'est-à-dire sols rouges caractéristiques des régions tropicales humides sous couvert forestier, pauvres en sable et riche en hydroxydes de fer et d'aluminium. En bordure de la rivière des Pluies, couches peu différenciées, vitriques (riches en verres volcaniques), et disposées sur des sables basaltiques et des gros galets non altérés.</td>
<td>Faible</td>
</tr>
<tr>
<td>Hydrogéologie</td>
<td>Nappe de base présente autour de 2 m NGR, pas de données sur la piézométrie des nappes alluviales et superieures.</td>
<td>Nul</td>
</tr>
<tr>
<td>Eaux superficielles</td>
<td>Le site de l’aéroport est bordé en limite Ouest par la rivière des Pluies, cours d’eau pérénère. Les pistes de l’aéroport ont été construites en empilletant sur le cône alluvial du cours d’eau, dont l’embouchure est aujourd’hui endiguée en rive droite.</td>
<td>Fort</td>
</tr>
<tr>
<td>Risques inondation et mouvement de terrain</td>
<td>Aléa inondation fort au niveau des cours d’eau qui jouxtent le site (à l’Ouest) ou le traversent (à l’Est).</td>
<td>Faible</td>
</tr>
<tr>
<td>Astax littoraux</td>
<td>Sur la zone d’étude, le trait de côte est jugé plutôt stable sur tout le linéaire (plage ou cordon à galets, littoral aménagé, embouchure) situé au niveau de la Rivière de la Rivière des Pluies à la jetée portuaire de Sainte Marie, à l’exception d’une partie de la plage située à l’ouest des protections littorales existantes. Sur cette portion, des dispositifs d’aide à la navigation aérienne sont installés en retrait de la côte et doivent d’ailleurs être protégés. L’embouchure de la rivière des Pluies à l’Est des pistes et du milieu marin côtier et portuaire sont propices à la diversité des espèces et des habitats. La colonisation de Patates à Durand sur le front de mer confère à ce secteur une sensibilité écologique modérée.</td>
<td>Faible à Modéré</td>
</tr>
<tr>
<td>Milieu marin</td>
<td>Littoral sablo vaseux à plage de galets, de morphologie naturelle en rive droite de la rivière des Pluies et à l’Est du port, aménagé d’envirochamps et de BCR sur le linéaire de l’aéroport et du port. La morphologie littorale est influencée majoritairement par la houle. Les houles d’alizés de secteur Nord-Est, à l’origine d’une dérive littorale dirigée vers l’Ouest, entraînent les sédiments les plus fins. Les houles cycloniques arrachent les sédiments plus grossiers (galets) vers les petits fonds et sont à l’origine des modifications les plus importantes. La qualité des eaux dans la zone est représentative d’une zone agitée, alimentée par des apports terrestres (MES, nutriments, rejets EU, etc.).</td>
<td>Modéré</td>
</tr>
</tbody>
</table>

MILIEU NATUREL

<table>
<thead>
<tr>
<th>Thèmes</th>
<th>Synthèse</th>
<th>Enjeu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection et portés à connaissance</td>
<td>La rivière des Pluies située en bordure Ouest du site de projet, est intégrée à l’aire d’adhésion à la Charte du Parc National, et classée en ZNIEFF de type 1 et 2 : - Le lit mineur est classé ZNIEFF de type I (ZNIEFF n°001-0042 « Fonds de la rivière de Pluies ») ; - Le reste du cours d’eau est classé ZNIEFF de type II (ZNIEFF n°001-0169 « Cours de la rivière des Pluies »).</td>
<td>Faible</td>
</tr>
<tr>
<td>Milieu naturel terrestre</td>
<td>Du fait de son caractère très anthropophique, le milieu environnant à l’aéroport est perturbé par une grande quantité d’espèces envahissantes conférant à la zone un faible enjeu floristique et faunistique. Néanmoins la présence de la Rivière des Pluies à l’Est des pistes et du milieu marin côté portuaire est propice à la diversité des espèces et des habitats. La colonisation de Patates à Durand sur le front de mer confère à ce secteur une sensibilité écologique modérée.</td>
<td>Faible à Modéré</td>
</tr>
<tr>
<td>Milieux naturels d’eaux douces</td>
<td>L’embouchure de la rivière des Pluies présente une qualité de l’eau globalement bonne malgré la présence du rejет pluvial de l’aéroport. Les peuplements d’algues diatomées montrent toutefois un signe de dégradation qui pourrait être naturel ou anthropique. Les peuplements de macro-invertébrés montrent également une bonne qualité du milieu, avec la présence d’espèces rares à l’échelle de l’île.</td>
<td>Fort</td>
</tr>
<tr>
<td>Milieu marin</td>
<td>Les principales zones d’enjeux identifiées sont les suivantes : - Les blocs basaltiques de la digue Est du port (5 m de fond) et les enrochements de la piste : ces zones d’abris à forte fonctionnalité écologiques seront atteintes par les panaches de dragage du port (car situés en aval du courant dominant) ; - Les affleurements basaltiques profonds (<50 m de fond) : zones de transit écologique pour de grandes espèces de poissons à cycle larvaire (notion de corridor écologique) (DEAL, 2014), généralement colonisées par une faune benthique profonde. Ces affleurements sont susceptibles d’être soumises à des phénomènes de sédimentation des particules fines remises en suspension sur le littoral lors des travaux. Ceci même si elles ne sont pas directement atteintes par les panaches formés.</td>
<td>Faible à modérée</td>
</tr>
<tr>
<td>Thèmes</td>
<td>Synthèse</td>
<td>Enjeu</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>MILIEU HUMAIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activités et milieu</td>
<td>Activités très variées aux alentours de l’aéroport : ZAC de la Mare et</td>
<td>Fort</td>
</tr>
<tr>
<td>environnant</td>
<td>Pierre Lagourgue, lotissements cité Geslin, ERP, zones de loisirs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(sentier littoral, parc de Bois Madame, club hippique, etc.), port de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sainte-Marie. Présence d’un dépôt d’hydrocarbures classé SEVESO seuil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>bas à environ 150 m de l’aéronef, mais dont les servitudes d’empiètent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pas sur la zone d’étude. Interaction du projet avec le projet d’extension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>du port de Sainte-Marie, porté par la CINOR.</td>
<td></td>
</tr>
<tr>
<td>Patrimoine bâti</td>
<td>Projet dans le périmètre de 500 m institué autour de la cheminée de la</td>
<td>Faible</td>
</tr>
<tr>
<td></td>
<td>Mare, classée Monument Historique.</td>
<td></td>
</tr>
<tr>
<td>Paysage</td>
<td>Enjeu important compte-tenu de la position de l’aéroport comme point</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d’entrée touristique sur l’île, mais à modérer par la nature des</td>
<td></td>
</tr>
<tr>
<td></td>
<td>infrastructures alentours et la vocation de la zone.</td>
<td></td>
</tr>
<tr>
<td>Transports et accès</td>
<td>Plusieurs accès possibles : depuis Gillot par la RN2, depuis la Mare par</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l’accès de service vers l’aéroclub et depuis le port de Sainte-Marie</td>
<td>Modéré</td>
</tr>
<tr>
<td></td>
<td>par la piste littorale. Trafic routier sur la RN2 dans la zone parmi les</td>
<td></td>
</tr>
<tr>
<td></td>
<td>les plus dense de la région.</td>
<td></td>
</tr>
<tr>
<td>Contexte acoustique</td>
<td>Enjeu modéré sur le bruit. Empreinte de projet dans les zones A, B et C</td>
<td>Modéré</td>
</tr>
<tr>
<td></td>
<td>du Plan d’Exposition au Bruit de l’aéroport, en cours de révision.</td>
<td></td>
</tr>
<tr>
<td>Qualité de l’air</td>
<td>Bonne qualité de l’air sur la zone, pas d’influence visible de l’activité</td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>aéroportuaire.</td>
<td></td>
</tr>
<tr>
<td>Usage de l’eau</td>
<td>Le périmètre du projet n’empiète pas sur un périmètre de protection de</td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>captages AEP.</td>
<td></td>
</tr>
<tr>
<td>Réseaux</td>
<td>Réseau pluvial aéroportuaire avec un rejet vers la Rivière des Pluies</td>
<td>Modéré</td>
</tr>
<tr>
<td></td>
<td>(bassin-versants Ouest), un rejet à la côte (bassin-versants Est) via</td>
<td></td>
</tr>
<tr>
<td></td>
<td>un passage sous les pistes, et un rejet dans le port de Sainte-Marie</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(situation de crues). Côte Est, un bassin de rétention de 40 000 m³ a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>été réalisé pour écarter les eaux pluviales des bassins-versants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>amont interceptées par l’aéroport. Séparateurs à hydrocarbures pour les</td>
<td></td>
</tr>
<tr>
<td></td>
<td>parkings avions. Eaux usées : partie Ouest de l’aéroport raccordée à la</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STEP du détachement aérien 181. Partie Est non raccordée. Réseaux secs:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l’aéroport possède 3 sous-stations électriques alimentées depuis le réseau</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EDF 15 kV.</td>
<td></td>
</tr>
</tbody>
</table>
3. COMPATIBILITE AVEC LES SCHEMAS, PLANS ET PROGRAMMES

La compatibilité du projet avec les documents d'urbanisme, la réglementation liée à l’eau et les documents de planification et de gestion des déchets est synthétisée dans le tableau ci-dessous.

Tabl. 2 - Compatibilité du projet avec les plans, programmes et documents de planification

<table>
<thead>
<tr>
<th>Document</th>
<th>Résumé</th>
<th>Position du site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documents d'urbanisme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAR/SMVM 2011</td>
<td>Zonage :</td>
<td>Compatible sous réserve de respecter les prescriptions de continuité écologique</td>
</tr>
<tr>
<td></td>
<td>- Majorité du périmètre aéroportuaire classé en « Zone urbaine à densifier ».</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Embouchure de la rivière des Pluies en « Espaces Naturels Remarquables du Littoral ».</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reste de la rivière des Pluies et du littoral adjacent en « Espaces de continuité écologique ».</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Le site est inclus dans le périmètre du SMVM, qui identifie :</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Le réaménagement de l’aéroport Roland-Garros (n°8) ;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- L’extension du port de plaisance de Sainte-Marie (n°10).</td>
<td></td>
</tr>
<tr>
<td>SCOT 2013 de la CINOR</td>
<td>Pas de référence directe au projet, mais le DOO du SCOT impose la prise en compte des nuisances sonores dans les projets d'infrastructures.</td>
<td>Compatible sous réserve de prendre en compte l’enjeu bruit</td>
</tr>
<tr>
<td>PLU de Sainte-Marie</td>
<td>Le site est implanté en zones urbaines (UL, UE, UT) et en zone naturelle N1 pour l'embouchure de la rivière des Pluie classé ENRL. En dehors de la zone N1, aucune prescription du PLU n’interdit les aménagements projetés.</td>
<td>Nécessite une modification simplifiée du PLU</td>
</tr>
<tr>
<td>Plans de Prévention des Risques</td>
<td>Le seul document en vigueur est le PPRi approuvé en 2001. Seules les ravines sont en aléa fort. Dans ces zones très exposées, les travaux d'infrastructures publiques et les travaux annexes qui leur sont liés sont admis par le règlement, à condition de ne pas aggraver les risques et leurs effets.</td>
<td>Compatible</td>
</tr>
<tr>
<td>Servitude SEVESO</td>
<td>Site de projet non concerné par les servitudes du dépôt d'hydrocarbures AVIFUEL classé SEVESO seuil bas</td>
<td>Compatible</td>
</tr>
<tr>
<td>Plan d'Exposition au Bruit</td>
<td>LE PEB vise les projets de constructions nouvelles à vocations d'habitation.</td>
<td>Non concerné</td>
</tr>
</tbody>
</table>

Résumé

<table>
<thead>
<tr>
<th>Document</th>
<th>Résumé</th>
<th>Position du site</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGE Nord</td>
<td>Document pas encore réalisé.</td>
<td>Non concerné</td>
</tr>
</tbody>
</table>
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique
RAPPORT DEFINITIF

Fig. 8. Cartographie de l'occupation des sols d'après le Schéma d'Aménagement Régional 2011
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 9. Extrait du Schéma de Mise en Valeur de la Mer 2011
Fig. 10. Espaces Recevant du Public et activités autour de la zone
Fig. 11. Installations Classées pour la Protection de l’Environnement (ICPE) et Monuments historiques
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

fig. 1. Plan d'Exposition au Bruit de l'aéroport Roland-Garros approuvé en 1996
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 2. Cartographie du PPRI approuvé de 2001
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 3. Cartographie du PPRi porté-à-connaissace le 16/09/2013
4. SOLUTIONS DE SUBSTITUTION EXAMINEES ET RAISON DU CHOIX DU PROJET

4.1. LES RESA : UNE CONTRAINTE REGLEMENTAIRE

La nouvelle réglementation AESA (Agence Européenne de la Sécurité Aérienne) applicable aux aérodromes des pays membres de l’Union Européenne est entrée en vigueur le 6 mars dernier après publication au journal officiel de l’Union.

Cette nouvelle réglementation impose des Aires de Sécurité en extrémité de Pistes ou RESA (Runaway End Safety Area) de 90 m minimum de part et d’autre de la bande de piste.

L’aéroport est en effet classé en catégorie 4E selon la classification de l’OACI, ce qui correspond à la capacité la plus grande de la classification. Cet allongement des aires de sécurité en bout de piste doit ainsi permettre le freinage d’avions gros porteurs lors d’atterrissages trop longs ou de décollages interrompus.

L’aéroport de la Réunion Roland Garros doit donc se mettre en conformité afin d’obtenir la conversion de son certificat en certificat européen au plus tard le 31 décembre 2017.

Tabl. 3 - Rappels des exigences réglementaires (spécifications de certification relatives aux RESA)

<table>
<thead>
<tr>
<th>Exigence réglementaire</th>
<th>Application sur l’aéroport ARRG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.210</td>
<td>Sachant que ARRG est un aéroport de code 4, la mise en place d’une RESA aux deux extrémités de chaque piste est donc obligatoire.</td>
</tr>
</tbody>
</table>
| C.215 | Sachant que ARRG est un aéroport de code 4, la longueur de la RESA doit être au minimum de 90 m et il faut l’étendre dans la mesure de possible à 240 m. Cette longueur peut être réduite uniquement en cas présence d’un système de arrêt. De plus, la largeur de la RESA doit être au minimum 2 fois la largeur de la piste associée. Par conséquent :
 - Longueur RESA = 90 m (à augmenter si possible à 240 m et pourra être diminué en présence d’un système d’arrêt)
 - Largeur RESA = 2 * Largeur de la piste =2 *45 = 90 m (ou égale à la largeur de la partie nivelée de la bande de piste si possible) |
| C.220 | La RESA doit être libre de tout objet à l’exception des équipements et installation navigation aérienne (étant frangible). Par conséquent les équipements ILS et balisages peuvent se situés dans la zone RESA. |
| C.225 | la surface de la RESA doit être nivelée et dégagée de tout obstacle. |
| C.230 | la surface de la RESA ne doit pas pénétrer les trouées de décollage et d’approche. De plus les pentes transversales et longitudinales ne doivent pas dépasser 5% |
| C.235 | Non renseigné |

3 Le chiffre (de 1 à 4) tient compte de la distance de référence de l’avion (longueur de piste nécessaire au décollage à masse maximale). La lettre (A à E) tient compte de l’envergure de l’avion et de la largeur du train principal.

4 OACI : Organisation de l’Aviation Civile Internationale
Ainsi, la RESA découle d’une obligation au sens de l'EASA. D’après les spécifications de certifications, la longueur minimale obligatoire de la RESA est 90 m, et il est recommandé de l’étendre à 240 m, sans indication d’échéance précise.

4.2. JUSTIFICATION DE LA SOLUTION RETENUE ET ALTERNATIVES ETUDIEES

4.2.1. Variantes de RESA étudiées

Deux longueurs de RESA ont été étudiées au cours du projet :

- **RESA 90 m**, solution qui permet la mise en conformité à l’horizon 2017.

- **RESA 240 m**, solution qui correspond à ce qui pourrait être rendu obligatoire à plus long terme que l’échéance 2017.

Dans ce paragraphe, il est présenté l’ensemble des solutions étudiées, depuis le premier rapport réalisé par le SNIA en novembre 2013 jusqu’au dossier AVP réalisé en 2016.

4.2.1.1. RESA 90 M

4.2.1.1.1. Etude préalable SNIA - 2013

Les seuils 12 et 14 se situent en bordure de la Rivière des Pluies, au niveau de son embouchure. Leur extension vers le lit mineur de cette rivière est difficilement réalisable étant donné que ce dernier est très contraint au niveau de la concession aéroportuaire.

Ainsi, 2 solutions ont été envisagées par la SNIA en 2013 pour la mise en place d’une RESA 90 au niveau de ces 2 seuils :

- **Simulation A** : création d’une RESA de longueur de 90m sur chacune des pistes. Cette simulation nécessite de décaler les raquettes en seuils 12 et 14 afin de caler la RESA en butée de l’emprise aéroportuaire. Le décalage de ces seuils nécessite alors de déplacer le seuil 30 afin de conserver la longueur actuelle de la piste (le seuil 32 n’est pas déplacé, la longueur « disponible » de la piste 14/32 est alors diminuée).

![Fig. 4. Emprise de la solution RESA 90 m – seuil 14 (source : SNIA/PEA Aix-en-Provence 2013)](image-url)
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 5. Emprise de la solution RESA 90 m – seuil 12
(source : SNIA/PEA Aix-en-Provence 2013)

Ce scénario, conforme aux exigences aéronautiques, nécessite donc un comblement total du port de Sainte Marie.

- **Simulation B** : Mise en place de RESA 90 dite « optimisée » au niveau des seuils 12 et 14. Cette optimisation consiste à mettre en place un dispositif particulier permettant que les parties de pistes déclassées en extrémité 12 et 14 prennent le station de « voie de circulation » et restent utilisables au roulage avant alignement pour le décollage ou après atterrissage. Dans une telle configuration, les aéronefs au décollage sont susceptibles d'amorcer leur décollage légèrement en amont de l'extrémité déclarée de la piste. Ce dispositif permet de limiter l'emprise de la RESA en seuil 30 dans le port de Saint Marie.
Fig. 7. Emprise de la solution RESA 90 m optimisée – seuil 12 et 14
(source : SNIA/PEA Aix-en-Provence 2013)

Fig. 8. Emprise de la solution RESA 90 m optimisée sur le port de Sainte-Marie
(source : SNIA/PEA Aix-en-Provence 2013)

Cette simulation a pour principal avantage de limiter l’emprise de la RESA dans le port de Sainte Marie mais modifie les conditions d’exploitation et doit donc faire l’objet d’une demande de condition spéciale. Un dossier en ce sens a été réalisé par le BET EGIS Avia et a été validé par courrier par la DGAC.

Validé par les autorités compétentes, le programme de maîtrise d’œuvre a donc été basé sur cette simulation B.
4.2.1.2. Etude MOE ARTELIA / ADP Ingénierie

Dans le cadre de l’étude de maîtrise pour la mise en place des RESA, 2 solutions ont été étudiées au niveau de la RESA seuil 30 (en tenant compte du scénario B présenté ci-dessus) :

- Une solution RESA 90 m « optimisée », qui permet de ne combler que partiellement le port ;
- Une solution RESA 90 m « optimisée » type EMAS qui permet, grâce à une variante technique au niveau de la RESA seuil 30, de ne pas combler que le port de Sainte Marie

A. Resa 90 m optimisé

Dans le cadre de l’AVP, l’emprise de la RESA 90 m « optimisée » pour le seuil 30 a été précisée et l’impact sur le port de Sainte Marie évalué.

![Emprise de la solution RESA 90 m optimisée sur le port de Sainte-Marie (source : ARTELIA 2015)](image)

La mise en place de cet RESA nécessite de diminuer la capacité de la darse : seul 1 ponton est conservé, et la capacité du bassin passe de 188 unités à environ une centaine.

Plusieurs solutions de port à sec ont été étudiées afin de conserver la capacité initiale du port de Sainte Marie :

- Solutions type A – Stockage vertical sur racks métalliques ;
- Solutions type B – Stockage horizontal, parc à bateaux.

B. Resa 90 m optimisé – solution EMAS

Une variante technique permettant de réduire les longueurs nécessaires aux solutions « RESA 90 m » ou « RESA 240 m » a été étudiée : l’« EMAS ».
Un EMAS est un « lit d'arrêt » situé à l'extrémité d'une piste. Le lit d'EMAS est composé de béton déformable léger pour lequel le sable et le gravier sont remplacés par de l'air et de la cellulose. Le matériau ressemble à du béton, mais son poids équivaut approximativement à celui d'une éponge sèche. Lorsqu'un aéronef roule sur un lit d’EMAS, ses pneus s’enfoncent dans le béton léger et l’aéronef ralentit de manière prévisible. La sécurité de l’aéronef est garantie par le fait que l’effondrement de l’EMAS est calculé pour ne pas mettre en danger l’intégrité de l’aéronef.

Dans le cas d’une « RESA 90 m », la longueur nécessaire au système EMAS est de 80,2 m à partir du seuil de bout de piste. L’impact sur le port est minimisé : seule la première ligne de quais du port doit être supprimée (cf Fig. 4 page 6).

La pente longitudinale de cet ouvrage a été optimisée. Initialement, la pente de l’EMA était envisagée à 0%. Ainsi, la hauteur entre le terre-plein de la RESA et le port de Sainte Marie était supérieure à 8 mètres. Les études ont été affinées, et une pente longitudinale de la plateforme de -1.2% a été actée, permettant de diminuer cette hauteur à moins de 7 mètres.

Plusieurs scénarii ont été étudiés pour l’interaction entre le port et la concession aéroportuaire.

Ces différents scénarii sont détaillés ci-après.

Le scenario 1 a été retenu. Il s’agit de la solution EMAS détaillée dans les chapitres ci-après. Dans le cadre des mesures compensatoires, des places de parking longitudinales le long du mur de soutènement ont également été ajoutées (cf 6.2.3).
Fig. 10. Vue en coupe – scénario 1
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 11. Vue en plan – scenario 1
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 12. Vue en coupe – scénario 2
Fig. 13. Vue en plan – scenario 2
Fig. 14. Vue en coupe – scénario 3
Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Fig. 15. Vue en plan – scenario 3
4.2.1.2. **RESA 240 M**

Dans le cadre de l’AVP, la mise en place d’une RESA 240 mètre « de base » au niveau du seuil 30 a été étudiée. Il s’agit de la solution la plus défavorable, avec mise en place d’une RESA de 240m sur les 4 seuils, et maintien de la longueur de piste au niveau de la piste 12-30.

L’emprise de la RESA, au niveau du seuil 30, est présentée ci-dessous :

![Diagram of RESA 240 m on the port of Sainte-Marie](source: ARTELIA 2015)

Cette solution implique le comblement total du port de Saint Marie et une emprise des aménagements au-delà de la digue Est du port (suppression totale des ouvrages existants).

Dans ce cas et il est alors nécessaire de reconstruire la Digue Est.
4.2.1.3. ANALYSE MULTICRITERES

Les différentes solutions possibles de RESA pour le seuil 30 présenté dans les paragraphes précédents sont synthétisées ci-dessous :

- Mise en place d’une RESA 240 m (cf. paragraphe 4.2.1.2) ;
- Mise en place d’une RESA 90 m optimisée (cf. paragraphe 4.2.1.1.2.A)
- Mise en place d’une RESA 90 m EMAS (cf paragraphe 4.2.1.1.2.B)

Le tableau multi critère suivant détaillle les avantages et inconvénients de ces 3 solutions d’un point de vue milieu terrestre et marin.

Tabl. 4 - Tableau analyse multicritères – approche milieu terrestre

<table>
<thead>
<tr>
<th>Compartiment</th>
<th>Phase exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESA 240 m</td>
</tr>
<tr>
<td>Sols et sous-sols</td>
<td>---</td>
</tr>
<tr>
<td>Remblais et approvisionnement en matériaux</td>
<td></td>
</tr>
<tr>
<td>Activités humaines</td>
<td>-</td>
</tr>
<tr>
<td>Compatibilité avec le projet de port de la CINOR</td>
<td></td>
</tr>
<tr>
<td>Activité portuaire et usages loisirs de la zone en phase travaux</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-</td>
</tr>
<tr>
<td>Paysage</td>
<td>---</td>
</tr>
<tr>
<td>Coût</td>
<td>---</td>
</tr>
<tr>
<td>(94 M€)</td>
<td>(7 M€)</td>
</tr>
<tr>
<td>Total</td>
<td>-13</td>
</tr>
</tbody>
</table>

Légende :

- à --- : « Peu impactant » à « Très impactant »
+ à +++ : « Assez favorable » à « Très favorable »
Renforcement du littoral et mise en place d’aïres de sécurité aux extrémités des pistes (RESA)

Résumé non technique

RAPPORT DEFINITIF

Tabl. 5 - Tableau analyse multicritères – approche milieu marin

<table>
<thead>
<tr>
<th>Compartiment</th>
<th>Phase chantier</th>
<th>Phases exploitation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RESA 240</td>
<td>RESA 90</td>
</tr>
<tr>
<td></td>
<td>RESA 240</td>
<td>RESA 90</td>
</tr>
<tr>
<td>Eau</td>
<td>MES</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Courantologie</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Sédiment</td>
<td>Transit littoral</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Engraissement / dégraissement</td>
<td>-</td>
</tr>
<tr>
<td>Peuplements coralliens</td>
<td>Digue le long de la piste</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Chenal d’entrée du port</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Affleurements profonds</td>
<td>=</td>
</tr>
<tr>
<td>Autres peuplements remarquables</td>
<td>Mammifères</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tortues</td>
<td>=</td>
</tr>
<tr>
<td>Usages</td>
<td>Activité de pêche</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Réglementaire</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Comblement naturel du port</td>
<td>NA</td>
</tr>
</tbody>
</table>

Légende :
- à --- « Peu impactant » à « Très impactant »
= Impact équivalent entre les solutions, ou négligeable
+ à +++ « Assez favorable » à « Très favorable »

La solution EMAS ayant le moins d’interaction avec le milieu marin, il est logique que ce soit celle avec le moins d’effets négatifs sur cette composante. Le choix de la solution dépend cependant de nombreux autres critères :

Tabl. 6 - Synthèse des avantages inconvénients des solutions RESA étudiées

<table>
<thead>
<tr>
<th></th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESA 240 m non optimisée</td>
<td>Conforme à la recommandation EASA, dépasse l’obligation demandée</td>
<td>Coût et impact sur le port, forts impacts sur le milieu marin et activités portuaires</td>
</tr>
<tr>
<td>RESA 90 optimisée</td>
<td>Conforme à l’obligation, Coût maîtrisé</td>
<td>L’impact sur le port, bien que minimisé par rapport à la RESA 240 reste important</td>
</tr>
<tr>
<td>RESA 90 m optimisée avec EMAS</td>
<td>Impact sur le port limité, permet de répondre à l'obligation de l'EASA, solution avec le moins d'interaction avec le milieu marin</td>
<td>Cout, impact paysager du mur de soutènement</td>
</tr>
</tbody>
</table>

La solution retenue par l’aéroport, et validée par un courrier de la DGAC en date du 29 avril 2016, est la mise en place d’une RESA 90 m optimisée avec système EMAS.
4.2.2. Variantes de protections littorales étudiées

Deux variantes de protections littorales ont été étudiées, une variante en enrochements et une variante en BCR.

La variante en BCR a été retenue, pour les raisons suivantes :

- Les blocs seront fabriqués sur place, ce qui limite les déplacements de matériaux et le trafic routier associé ;
- Elle permet de s'affranchir des risques techniques et réglementaires aux contraintes d'approvisionnement en enrochements (ouverture de carrière nécessaire).
- Le choix des BCR ou des enrochements n'a pas une influence significative sur le milieu marin.

En effet, le remplacement du cordon à galets littoral par une carapace de protection artificielle aura un effet négatif sur le rôle de nurserie joué par le cordon littoral à galets. Les BCR (ou enrochements) offrent en en effet à long terme une complexité structurelle moins marquée, et donc un nombre d'habitats moins importants. Ceci notamment pour les juvéniles de certaines espèces de poissons à caractère commercial (*Lutjanus kasmira*).

En revanche, un effet positif est à prévoir sur les BCR (ou enrochements) qui pourraient être colonisés par la faune fixée (coraux notamment) et servir d’abri à des poissons de plus grande taille.

Il est à noter que cet effet serait sensiblement meilleur dans le cas où la solution d'enrochements naturels était retenue. Les blocs naturels sont en effet plus facilement colonisables par la faune marine fixée et mobile.

Tabl. 7 - Analyse multicritère protection littorale (enrochements / BCR)

<table>
<thead>
<tr>
<th></th>
<th>Enrochements</th>
<th>BCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déplacements de matériaux – Trafic routier</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Emprise sur le chantier</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>Contraintes techniques et réglementaires</td>
<td>--</td>
<td>+</td>
</tr>
<tr>
<td>Effets sur le milieu marin</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>Coût</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>-5</td>
<td>-2</td>
</tr>
</tbody>
</table>
5. ANALYSE DES EFFETS DU PROJET

L'évaluation des effets et des impacts du projet sur l'environnement consiste à déterminer la nature, l'intensité, l'étendue et la durée de tous les impacts que le projet risque d'engendrer. Il s'agit de mettre en évidence les effets que le projet est susceptible de générer. Ces effets peuvent être :

- **Temporaires**, c'est-à-dire limités dans le temps. Le plus souvent il s'agit des effets induits par les travaux de réalisation du projet. Ceux-ci peuvent avoir une influence à différentes échelles de temps :
 - Le court terme, par exemple les effets immédiats du bruit des travaux ou les effets du déversement massif d'un produit toxique sur la faune aquatique ;
 - Le moyen terme, par exemple les effets d'un défrichement sur la colonisation par les espèces envahissantes ;
 - Le long terme, par exemple la contribution d'un défrichement à la disparition d'habitats à l'échelle de l'île, ou bien encore les effets de pollutions chroniques sur les dynamiques de population des espèces.

- **Permanents**, c'est-à-dire que le projet modifie de façon irrémédiable son environnement ;

- **Directs**, par exemple coupe d'une espèce végétale ;

- ou **indirects**, que ce soit par :
 - effets par relations, par exemple suppression d'un habitat ou d'une plante-hôte indispensable à la survie d'une espèce animale ;
 - effets en chaîne, plusieurs effets élémentaires réunis créant un effet synergique plus important que la somme de leurs effets initiaux (par exemple cumul de différents types de polluants interagissant entre eux ou cumul de différentes sources de stress) ;
 - effets répétés dans le temps ou dans l'espace (par exemple barrages en série sur une rivière, l'effet cumulatif du retard que constituent chacun des obstacles peut fortement contrarier la reproduction ou sélectionner une partie des migrateurs) ;

- **Négatifs** pour cet environnement ou au contraire positif.

Les tableaux suivants présentent les effets prévisibles du projet sur son environnement, qu'ils soient positifs ou négatifs, directs ou indirects, permanents ou temporaires.
5.1. SYNTHESE DES EFFETS DU PROJET

Les impacts potentiels prévisibles du projet sur son environnement sont résumés ci-dessous pour la phase de travaux et la phase d’exploitation du projet.

Tabl. 8 - Synthèse des impacts potentiels avant mesures en phase chantier et en phase exploitation

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts en PHASE TRAVAUX</th>
<th>Impact potentiel</th>
<th>Impacts en PHASE EXPLOITATION</th>
<th>Impact potentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILIEU PHYSIQUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climat</td>
<td>Pas d’impact</td>
<td>Nul</td>
<td>Pas d’impact</td>
<td>Nul</td>
</tr>
<tr>
<td>Qualité de l’air</td>
<td>Emissions de poussières durant les travaux, d’ampleur variable selon les conditions météorologiques.</td>
<td>Faible</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td>Topographie</td>
<td>RESA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Décaissements sur environ 1,3 m de profondeur prévus</td>
<td>Faible</td>
<td>Remblais d’une emprise de 80 m x 10 m sur la chaussée du port de Sainte-Marie avec un mur de soutènement de 7 m de haut en limite.</td>
<td>Modéré</td>
</tr>
<tr>
<td></td>
<td>Littoral</td>
<td>Modéré</td>
<td>Mise en place d’une carapace de protection de 4 m d’épaisseur sur le littoral</td>
<td>Modéré</td>
</tr>
<tr>
<td></td>
<td>Rivière des Pluies</td>
<td>Modéré</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td>Sols et sous-sols</td>
<td>RESA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact faible sur la pédologie car vocation aéroportuaire de la zone et absence d’enjeu agricole ou floristique au droit des pistes et du port.</td>
<td>Faible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pas d’impacts sur la morphodynamique du port.</td>
<td>Faible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Littoral</td>
<td>Modéré</td>
<td>Modéré</td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Rivière des Pluies</td>
<td>Modéré</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rivière des Pluies</td>
<td>Modéré</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque de pollution chronique et accidentelle lié au chantier.</td>
<td>Modéré</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eaux souterraines</td>
<td>RESA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pour le seuil 30 : affouillements jusqu’à – 2,50 m NGR pour la semelle du quai de fond de bassin. Potentielle interaction avec la nappe de base à 2 m NGR environ au niveau du forage F2 Gillot.</td>
<td>Nul (seuil 12, 14, 32)</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Littoral</td>
<td>Faible</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Rivière des Pluies</td>
<td>Faible</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Risque de pollution accidentelle et chronique liée aux travaux</td>
<td>Modéré</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aucun direct effet sur les eaux superficielles. Effet indirect lié aux risques de pollution par ruissellement jusqu’aux réseaux.</td>
<td>Négligeable</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Mer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emission de MES lors du creusement de la plage à galets (couche alluvionnaire)</td>
<td>Modéré</td>
<td></td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Apport de polluants (hydrocarbures notamment) lors du passage des engins de chantier (sur le cordon littoral à galets et à proximité du port)</td>
<td>Modéré</td>
<td></td>
<td>Nul</td>
</tr>
</tbody>
</table>
Milieu cible

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts en PHASE TRAVAUX</th>
<th>Impact potentiel</th>
<th>Impacts en PHASE EXPLOITATION</th>
<th>Impact potentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamique</td>
<td>Ruisselements d’eaux chargées en laitance de béton sur le chantier de construction des BCR</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td></td>
<td>Mise en place de batardeaux pour le détourner d’un bras vif. Risque de pollution accidentelle et chronique liée aux travaux</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Littoral</td>
<td>Négligeable en phase travaux</td>
<td>Négligeable</td>
<td>Pas de blocage du transit littoral, pas de rôle actif sur le contrôle de la dynamique sédimentaire</td>
<td>Négligeable</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Coupe temporaire du bras vif pendant la durée du chantier (3 mois)</td>
<td>Négligeable</td>
<td>Aucune incidence – restauration du site à l’état initial</td>
<td>Nul</td>
</tr>
<tr>
<td>Risque inondation /</td>
<td>Présence de personnel en zone d’aléa fort</td>
<td>Modéré à fort</td>
<td>Aucune incidence</td>
<td>Nul</td>
</tr>
<tr>
<td>submersion marine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risque mouvement de terrain /</td>
<td>Présence de personnel en zone d’aléa moyen à élevé</td>
<td>Modéré à fort</td>
<td>Aucune incidence</td>
<td>Nul</td>
</tr>
<tr>
<td>érosion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MILIEU NATUREL

<table>
<thead>
<tr>
<th>Milieu naturel</th>
<th>Impacts en PHASE TRAVAUX</th>
<th>Impact potentiel</th>
<th>Impacts en PHASE EXPLOITATION</th>
<th>Impact potentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flore terrestre</td>
<td>Le développement des espèces végétales invasives est favorisé par l’apport ou le transport de déblais et remblais.</td>
<td>Nul (seuil 12, 14, 32)</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>/</td>
<td>Faible (seuil 30)</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Littoral</td>
<td>Destruction d’individus de flore patrimoniale</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Les opérations de défrichement et de terrassement dans des fourrés secondaires sont porteuses d’un risque de destruction de nichées d’oiseaux terrestres</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Tous</td>
<td>Les travaux de nuits demandant des éclairages de chantier sont susceptibles de perturber les oiseaux marins et d’augmenter le taux d’échouage et de mortalité (échouage et collision)</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Milieux naturels d’eau douce</td>
<td>Effets indirects possible : dégradation de la qualité de l’eau dans la rivière des Pluies par le ruissellement des zones de travaux sur les seuils 12 et 14</td>
<td>Faible</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>Les travaux risquent de générer la détérioration des habitats « Lit de rivière » et « Eaux courantes » et des fonctionnalités écologiques associées</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Emissions de MES générées par l’excavation et le remblai pour la construction du nouveau quai, impactant la faune fixée sur les dunes du chenal d’entrée du port.</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Tous</td>
<td>Suppression du rôle de nursery du cordon littoral à galets pour certains poissons à valeur commerciale</td>
<td>Modéré</td>
<td>Les BCR pourront constituer un abri pour les juvéniles d’autres espèces de poissons et un support de colonisation pour la faune fixée.</td>
<td>Positif</td>
</tr>
<tr>
<td>Milieu naturel marin</td>
<td>Emissions de MES lors du creusement de la butée dans la coupe alluvionnaire, impactant la faune fixée sur les blocs au pied de l’estran le long de la piste.</td>
<td>Modéré à fort</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>Suppression du rôle de nursery du cordon littoral à galets.</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Littoral</td>
<td>Les BCR pourront constituer un abri pour les juvéniles d’autres espèces de poissons et un support de colonisation pour la faune fixée.</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Tous</td>
<td>Apport de polluants (hydrocarbures) ayant un impact sanitaire</td>
<td>Faible</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Nuance sonore pour les cétacés et les tortues</td>
<td>Faible</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
</tbody>
</table>
Résumé non technique

Rapport Definitif

Milieu humain

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts en PHASE TRAVAUX</th>
<th>Impact potentiel</th>
<th>Impacts en PHASE EXPLOITATION</th>
<th>Impact potentiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activité aéroportuaire</td>
<td>Travaux de nuit en dehors des périodes d’ouverture de l’aéroport.</td>
<td>Faible</td>
<td>Amélioration de la sécurité de l’aéroport</td>
<td>Positif</td>
</tr>
<tr>
<td>Trafic routier et accès</td>
<td>Accès au chantier par le port, mais travaux de nuit donc moindres nuisances pour les usagers. Coupure de la circulation dans le port durant 1,5 mois.</td>
<td>Modéré</td>
<td>Suppression d’une trentaine de places de stationnement dans le port de Ste Marie.</td>
<td>Modéré</td>
</tr>
<tr>
<td>Activités environnementales</td>
<td>Perturbation de l’activité de pêche pour les bateaux situés sur le quai en fond de darse pendant les travaux (5,5 mois) Fermeture de l’accès au littoral pendant 5 mois / an pendant 5 ans + nuisances des travaux. Incidence potentielle sur la pêche aux bichiques.</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Bruit</td>
<td>Travaux de nuit donc incidence plus forte.</td>
<td>Faible à modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Poussières</td>
<td>Vents dominants : alizés (secteur Sud Sud-Est) donc sens favorable aux lotissements voisins, mais facteur limitant pour le fonctionnement de l’aéroport.</td>
<td>Modéré</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Usages de l’eau</td>
<td>Aucun effet sur les usages de l’eau : pas de ressource AEP concernée, pas d’usages loisirs de la rivière des Pluies, travaux en dehors des périodes de pêche aux bichiques et sans impact sur les canaux.</td>
<td>Négligeable</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Réseaux</td>
<td>Aucun effet sur les réseaux</td>
<td>Nul</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Patrimoine bâti</td>
<td>Aucun effet sur le patrimoine</td>
<td>Nul</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>Présence de grues mobiles, engins de chantier, stocks de matériaux pendant la durée des travaux. Zone d’importance touristique (porte d’entrée et de départ), mais aussi de loisirs et résidentielle donc à enjeux.</td>
<td>Modéré</td>
<td>Impact visuel du talus de 7 m de haut donnant sur le port pour le seuil 30. Aucun effet pour les RESA des autres seuils.</td>
<td>Fort</td>
</tr>
<tr>
<td>Littoral</td>
<td>Artificilisation du littoral actuellement non aménagé par la pose d’une carapace en BCR, bouchant la vue sur la mer depuis le sentier littoral.</td>
<td>Fort</td>
<td>/</td>
<td>Négligeable</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Aucun impact s’agissant d’une réhabilitation de l’existant.</td>
<td>Négligeable</td>
<td>/</td>
<td>Nul</td>
</tr>
</tbody>
</table>

SA AEROPORT DE LA REUNION ROLAND GARROS

Renforcement du littoral et mise en place d’aires de sécurité aux extrémités des pistes (RESA)

Rapport definitif

ARTELIA / 470 1780 / JUILLET 2016
5.2. **EFFETS CUMULES AVEC D'AUTRES PROJETS**

L'analyse des effets cumulés vise à identifier les interactions des effets directs et indirects causés par un même projet ou par plusieurs projets. Ce sont par exemple :

- Des effets ponctuels, qui se répètent fréquemment dans le temps ou dans l'espace ;
- Les effets séparés de plusieurs projets ou programmes de travaux dont le cumul sur le milieu peut conduire à un effet synergique, c'est à dire à un effet supérieur à la somme des effets élémentaires ;
- Du cumul d'actions en chaîne induites par un seul et même projet sur un compartiment particulier du milieu.

Les projets à prendre en compte dans cette démarche sont ceux :

- Ayant fait l'objet d'un document d'incidence et d'une enquête publique ;
- Ou ayant fait l'objet d'une étude d'impact avec avis de l'autorité environnementale rendu public.

Les projets identifiés dans la zone d'étude répondant à ces critères sont les suivants :
Tabl. 9 - Liste des projets pour l’analyse des effets cumulés

<table>
<thead>
<tr>
<th>Maitre d’ouvrage</th>
<th>Projet</th>
<th>Emplacement</th>
<th>Document</th>
<th>Caractéristiques / principaux impacts du projet</th>
<th>Impacts susceptibles de se cumuler avec le présent projet</th>
</tr>
</thead>
<tbody>
<tr>
<td>CINOR</td>
<td>Extension du port de Sainte-Marie</td>
<td>Commune de Sainte-Marie La Mare</td>
<td>Dossiers en cours</td>
<td>Effets cumulés liés à la juxtaposition des zones de travaux et au phasage rapproché des deux projets : -Dégradation de la qualité des eaux marines lors des travaux. - Destruction des habitats sous-marins de cordon à galets. - Perturbation des activités autour de la zone portuaire. - Terrassements et remblais/déblais. - Nuisances de travaux pour le voisinage.</td>
<td>Travaux aux abords de la rivière des Pluies : emprise sur les habitats. Déblais / remblais et terrassements.</td>
</tr>
</tbody>
</table>

² DASRI : Déchets d’Activité de Soin à Risque Infectieux.
6. **MESURES DE REDUCTION ET DE COMPENSATION**

Les mesures proposées au présent chapitre reposent sur la démarche de priorisation suivante :

- En premier lieu, lorsque cela est possible : *éviter d’impacter le milieu*, par des choix judicieux de techniques ou de matériel, de localisation ou de phasage ;
- Lorsqu’il n’est pas possible d’éviter l’impact sur un élément du milieu, la seconde étape consiste à *réduire l’impact*, en intensité ou en durée ;
- Enfin, lorsque l’impact ne peut être évité, ou que l’impact résiduel après réduction reste important, des **mesures compensatoires** sont proposées. Il s’agit d’offrir des contreparties à des effets dommageables non réductibles du projet.

Les différentes mesures proposées dans ce chapitre sont ainsi référencées par type de la façon suivante :

- ME pour Mesure d’Evitement des impacts ;
- MR pour Mesure de Réduction des impacts ;
- MC pour Mesure de Compensation des impacts ;
- MS pour Mesure de Suivi ;
- MG pour Mesure de Gestion générale ;
- TR pour les mesures en phase travaux ;
- EX pour les mesures en phase exploitation.

6.1. MESURES EN PHASE TRAVAUX

6.1.1. Mesures générales de gestion environnementale de chantier

6.1.1.1. **CAHIER DES CHARGES ENvironnemental du DOSSIER de Consultation des Entreprises (MG TR)**

Chaque entreprise candidate remettra un SOPAE (Schéma Organisationnel d’un Plan Assurance Environnement), document présentant les dispositions relatives à l’environnement qu’elle envisage d’adopter.

Les entreprises amenées à soumissionner seront jugées sur le respect du cahier des charges environnementales qu’elles proposent, et notamment sur la réalisation d’un suivi environnemental de chantier (cf mesure MS TR 1).

Le dossier de consultation mentionnera qu’en cas de non-respect de ces clauses, des pénalités seront appliquées.

Les entreprises retenues seront tenues de rédiger :

Un Plan Particulier de Sécurité et de Protection de la Santé (PPSPS), qui définit des mesures destinées à prévenir les risques découlant des interventions successives ou simultanées sur le chantier.

6.1.1.2. CHARTE CHANTIER VERT

La charte « chantier vert » est un cahier des charges environnemental réalisé par le maître d’ouvrage et remis à tous les intervenants sur le chantier, qui doivent s’engager à la respecter. Il s’agit donc d’un document contractuel formalisant la démarche de chantier respectueux de l’environnement.

6.1.1.3. INFORMATION, FORMATION ET SENSIBILISATION DU PERSONNEL (MG TR)

Afin d’appliquer les obligations prévues par la réglementation, la charte chantier vert et le PAE, l’entrepreneur devra organiser des séances d’information et de formation de son personnel et de celui de ses sous-traitants. Celles-ci auront lieu au démarrage des travaux et tout au long du chantier.

6.1.1.4. SUIVI ENVIRONNEMENTAL DE CHANTIER (MS TR)

Un suivi environnemental de chantier sera mis en place pour vérifier l’application des mesures et les ajuster au besoin.

6.1.2. Mesures liées au milieu physique

6.1.2.1. MESURES LIEES AUX RISQUES DE POLLUTION DES SOLS ET DES EAUX

Afin de limiter le risque de pollution chroniques ou accidentelles lors du chantier, les mesures suivantes seront mises en place :

6.1.2.1.1. Stockage et utilisation de produits toxiques ou dangereux

- **Evitement des substances dangereuses ou toxiques** (ME TR) : limitation au maximum de l’usage de substances toxiques ou dangereuses et emploi d’huiles de décoffrage végétales.

 De manière générale, à performance égale, les produits les moins dangereux pour la santé et la sécurité seront privilégiés.

- **Précautions de stockage et manipulation** (MR TR) : fiches de données de sécurité, protections collectives et individuelles, stockage dans des zones spécifiques et sur des aires protégées pour les matériaux dangereux par film plastique de faible épaisseur, sur dispositifs munis de rétentions, et à l’abri de la pluie, ravitaillement des engins sur aire étanche, récupération des huiles et liquides hydrauliques, entretien des véhicules à l’extérieur du chantier…

- **Géotextile étanche sous piste de chantier** (MR TR)

- **Gestion et contrôle du trafic d’engins** (ME TR)

- **Aire étanche pour la réalisation des travaux** (MR TR)
6.1.2.1. Gestion des déchets de chantier

- Récupération des laitances de béton (MR TR)
- Evacuation et traitement des déchets (ME TR)
- Rejet des EU dans le réseau existant ou évacuation vers un centre agréé.

6.1.2.1.3. Mesures en cas de déversement accidentel

Malgré les précautions prises, le chantier n’est pas à l’abri d’une pollution accidentelle, notamment liée aux engins.

- **Conduite en cas de déversement accidentel** (MR TR)
 Le personnel doit donc être formé et informé (affichage) sur les mesures d’urgence à appliquer.

- **Evacuation et traitement des sols pollués** (MR TR)
 En fonction des caractéristiques de la pollution, des procédés de traitement des eaux et/ou des sols devront être mis en œuvre. Dans le cas de déversement de polluants sur le sol, hydrocarbures notamment, les mesures d’urgence définies précédemment seront complétées.

- **Procédure d’alerte en cas de pollution accidentelle grave**

6.1.2.2. MESURES LIÉES A LA QUALITÉ DE L’EAU

6.1.2.2.1. Rivière des Pluies et gestion des eaux pluviales

Une gestion des eaux pluviales est prévue en phase chantier sur les installations de chantier, sur les pistes et plateformes provisoires, et sur les voies déviées de circulation afin de limiter l’augmentation de la turbidité dans la Rivière des Pluies lors de travaux :

- Mise en place de géotextile ou couche de graves (MR TR)
- Plateformes de travail avec fossé et revêtement étanche ;
- Ouvrage de traitement des EP correctement dimensionné, respect de seuil de rejet ;
- Plan d’assainissement à fournir en période de préparation.

Un suivi du pH sera aussi réalisé en cas de bétonnage.

6.1.2.2.2. Milieu marin

- Planification des travaux en hiver austral et sur les zones où la couche alluvionnaire (limon) est présente (linéaire concerné à déterminer selon les futures études géotechniques).
- Contention de panache turbide :
 - Surveiller les émissions de MES et la turbidité liées aux travaux dans le port ;
 - Barrage anti-MES lors des travaux dans le port.

6.1.2.3. MESURES LIÉES A LA GEOMORPHLOGIE ET AU TRANSIT LITTORAL

- Limiter au maximum l’exondement vers le large, conformément aux plans de masses actuels qui ne prévoient pas de dépasser la plage à galets, en évitant notamment les zones colonisées,
- Favoriser les périodes hivernales calmes.
6.1.2.4. RISQUE INONDATION - HYDRAULIQUE

Pour toute la durée des travaux, afin de protéger le personnel, le matériel et la ressource en eau, des mesures de sauvegardes seront mises en place.

Elles reposent sur les bulletins d’alertes (forte pluie / alertes cycloniques) émis par Météo France.

En tout état de cause, le maître d’œuvre et les entreprises en charge des travaux devront se tenir informés auprès des services de Météo France des risques de fortes pluies sur le secteur de la Rivière des Pluies et de son bassin versant et des événements cycloniques pendant leurs périodes d’intervention.

6.1.3. Mesures liées au milieu naturel

6.1.3.1. MESURES LIEES A LA FLORE ET AUX HABITATS TERRESTRES

- Gestion des déblais - propagation d'espèces exotiques envahissantes ;
- Balisage des zones végétalisées à préserver (ME TR) ;
- Débroussaillages non chimique.

6.1.3.2. MESURES LIEES A LA FAUNE TERRESTRE

- Travaux limités en période de reproduction de l’avifaune terrestre (MR TR) : repérage par un écologue, débroussaillage en dehors de l’été austral ;
- Réduction des éclairages de chantier

Les éclairages de chantier devront respecter les prescriptions suivantes :

- Couleur jaune – orangée (T° de couleur < 3000 K) et non blanc-bleu ;
- Orientation vers le bas et casquette opaque (pas de type boule) ;
- Orientation vers la mer plutôt que vers la montagne.

En cas de recours à un éclairage nocturne du chantier, il conviendra donc de procéder à des extinctions (ou à défaut, en cas de nécessités dues à des retards trop importants ou à des obligations réglementaires diverses, à de fortes réductions de l’intensité des éclairages) lors des périodes les plus sensibles pour les oiseaux marins de La Réunion.

- Procédure liée au risque d’échouage de l’avifaune marine en cas de travaux de nuit (MR TR)
- Permettre à la faune cachée dans les déchets verts de s’échapper (MR TR) : stockage des déchets végétaux 3 à 4 jours

6.1.3.3. MESURES LIEES AUX MILIEUX AQUATIQUES

Le mesures suivantes seront mises en place en faveur des milieux aquatiques terrestres :

- Eloigner les bases de vie, magasins, conteneurs, zone de stockage, etc. du lit de la rivière et des zones d’écoulement (balisage à prévoir des zones d’habitat et de reproduction à préserver), et prévoir l’assainissement pluvial des plates-formes de chantier (décrire les installations de chantier dans le PAE des entreprises).
- Mettre en œuvre un suivi du pH dans le lit de la rivière (amont/aval).
De plus, lors des phases de bétonnage, un suivi de pH en continu sur le bras concerné sera utile pour éviter les pollutions, suspendre le chantier si nécessaire et permettre une intervention antipollution d’urgence, le cas échéant.

- Prévoir des péches de sauvegarde de la faune aquatique au préalable des détournements de bras de rivières ou de travaux dans le lit de la rivière. Il s’agit de péches électriques dites totales, destinées à recueillir et déplacer l’ensemble des individus d’un tronçon du cours d’eau.

6.1.4. Mesures liées au milieu humain

6.1.4.1. MESURES LIEES AUX POUSSIERES

- Arrosage du chantier par camion asperseur (MR TR)
- Pose de barrières opaques pour les zones de chantier les plus émettrices (MR TR)
- Installation de “décrotteurs” pour les roues d’engins (MR TR)

6.1.4.2. MESURES LIEES AU BRUIT

Pour limiter les nuisances sonores aux riverains, les mesures suivantes seront appliquées :

- Information des riverains
- Optimisation des circulations et des implantations
- Limitation de la vitesse sur chantier
- Broyage-concassage hors site
- Respect des horaires autorisés de travaux
- Utilisation de matériel et engins conformes

6.1.4.3. MESURES LIEES AU PAYSAGE

- Clôture du chantier (MR TR)
- Revégétalisation des zones mises à nu (MC TR)

6.1.4.4. MESURES LIEES A LA CIRCULATION

- Définition des emprises de chantier qui seront déplacées au fur et à mesure de l’avancement des travaux assurant ainsi une occupation de l’espace public et privé réduite au strict nécessaire.

- Des plans de circulation provisoires seront mis en place au niveau des zones concernées après avoir été soumis à l’accord des autorités compétentes. Ils s’accompagneront d’une information du public et seront indiqués à partir d’une signalisation temporaire réglementaire au sol et sous forme de panneaux. Cette signalisation tiendra compte des piétons et cyclistes du sentier littoral.

6.1.4.5. MESURES LIEES AUX ACTIVITES ENVIRONNANTES

Déplacement des embarcations concernées par les travaux (sur les autres quais ou à sec) afin de permettre le maintien de l’activité des embarcations déplacées.
6.1.5. Synthèse des mesures en phase chantier

Tabl. 10 - Synthèse des impacts et mesures en phase chantier

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts avant mesures en PHASE TRAVAUX</th>
<th>Impact brut</th>
<th>Mesure d'évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climat</td>
<td>Pas d'impact</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Qualité de l'air</td>
<td>Emissions de poussières durant les travaux, d'amplitude variable selon les conditions météorologiques.</td>
<td>Faible</td>
<td>Pose de géotextile ou couche de gravès au sol ; Arrosage du chantier ; Pose de barrières opaques verticales ; Décrotteurs pour roues d'engins ; Confinement lors des démolitions d'ouvrages.</td>
<td>Négligeable à faible</td>
<td>/</td>
<td>Négligeable à faible</td>
</tr>
<tr>
<td>Topographie</td>
<td>Decaissements sur environ 1,3 m de profondeur prévus</td>
<td>Modéré</td>
<td>Réutilisation des déblais en remblais autant que possible.</td>
<td>/</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Littoral</td>
<td>Affouillements nécessaires de 5 m de profondeur dans le terrain naturel</td>
<td>Modéré</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Excavation jusqu'à 9 m de profondeur dans le lit de la rivière, sur un linéaire de 55 m et une largeur de 35 m au total dans la rivière des pluies</td>
<td>Modéré</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>RESA</td>
<td>Impact faible sur la pédagogie car vocation aéroportuaire de la zone et absence d'enjeu agricole ou floristique au droit des pistes et du port.</td>
<td>Faible</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Faible</td>
</tr>
<tr>
<td>Rivières des Pluies</td>
<td>Pédologie : remaniements du sol sans modification significative de l'état existant.</td>
<td>Négligeable</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Négligeable</td>
</tr>
<tr>
<td>Sols et sous-sols</td>
<td>Modification significative mais temporaire de la géomorphologie du cours d'eau avec le détourment du bras vif.</td>
<td>Fort</td>
<td>Stockage des déblais et réutilisation pour la remise en état du cours d'eau (ré ouverture du bras vif).</td>
<td>Modéré</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Tous</td>
<td>Risque de pollution chronique et accidentelle lié au chantier</td>
<td>Modéré</td>
<td>Mesures de prévention lors du stockage et de la manipulation. Formation du personnel en cas d'accident. Kits antipollution à disposition.</td>
<td>Faible</td>
<td>Cahier des charges environnemental / charte chantier vert ; Suivi environnemental de chantier ; Formation et sensibilisation du personnel.</td>
<td>Faible</td>
</tr>
<tr>
<td>Eaux souterraines</td>
<td>Pour le seuil 30 : affouillements jusqu'à –2,50 m NGR pour la semelle du quai de fond de bassin. Potentielle interaction avec la nappe de base à 2 m NGR environ au niveau du forage F2 Gillot.</td>
<td>Faible</td>
<td>Protection des fouilles par merlons ; Evitement d'utilisation et de stockage de substances toxiques, dangereuses ou polluantes ; Précautions de stockage et manipulation ; Formation du personnel en cas de déversement accidentel.</td>
<td>/</td>
<td>Cahier des charges environnemental ; Charté chantier vert ; Suivi environnemental de chantier ; Formation et sensibilisation du personnel.</td>
<td>Nul (seuil 12, 14, 32)</td>
</tr>
<tr>
<td>Milieu cible</td>
<td>Impacts avant mesures en PHASE TRAVAUX</td>
<td>Impact brut</td>
<td>Mesure d'évitement ou de réduction</td>
<td>Impact potentiel</td>
<td>Mesure de compensation ou de suivi</td>
<td>Impact résiduel</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>-----------------</td>
<td>----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>RESA</td>
<td>Aucun direct effet sur les eaux superficielles. Effet indirect lié aux risques de pollution par ruissellement jusqu'aux réseaux.</td>
<td>Faible à modéré</td>
<td>Aire étanche pour les plateformes, ouvrages de traitement, fossés de collecte ; Protection des foulures par merlons ; Collecte et traitement des eaux pluviales et usées ; Récupération des laitances de béton ; Travaux hors d’eau – pas de bétonnage dans les bras vifs (détourment du bras de rivière) ; Evitement d’utilisation et de stockage de substances toxiques, dangereuses ou polluantes ; Précautions de stockage et manipulation ; Gestion stricte des déchets sur chantier ; Formation du personnel en cas de déversement accidentel.</td>
<td>Faible</td>
<td>Cahier des charges environnemental ; Charte chantier vert ; Suivi environnemental de chantier ; Formation et sensibilisation du personnel.</td>
<td>Faible</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Mise en place de batardeaux dans un bras vif. Remise en suspension et augmentation de la turbidité. Risque de pollution accidentelle et chronique liée aux travaux.</td>
<td>Modéré à fort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Littoral</td>
<td>Dispersion de MES lors des travaux de protection littorale ; Dispersion de MES lors des travaux d’aménagement du port ; Rejets accidentels de polluants liés au passage d’engins ; Ruissellement d’eaux chargées en laitances de béton issues du chantier de constructions des BCR.</td>
<td>Modéré</td>
<td>Privilégier les travaux en hiver pour les phases à risque (travaux à proximité de la station 3 notamment) ; Privilégier les travaux en hiver. Circonscrire la zone de travaux dans la darse avec un barrage anti-MES ; Respect des procédures classiques de chantier ;</td>
<td>Faible</td>
<td>Analyses périodiques de MES et suivi en continu de la turbidité pendant les travaux dans la darse.</td>
<td>Faible</td>
</tr>
<tr>
<td>RESA</td>
<td>Sans objet</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Littoral</td>
<td>Aucune incidence des travaux.</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Coupure temporaire du bras vif pendant la durée du chantier (3 mois).</td>
<td>Négligeable</td>
<td>Suivi des bulletins météo fortes pluies et cyclones ; Procédure d’évacuation des hommes et du matériel.</td>
<td>Négligeable</td>
<td>/</td>
<td>Négligeable</td>
</tr>
<tr>
<td>Risque inondation</td>
<td>Présence de personnel en zone d’aléa fort.</td>
<td>Modéré à fort</td>
<td>Suivi des bulletins météo fortes pluies et cyclones ; Procédure d’évacuation des hommes et du matériel ; Respect des prescriptions du PPR applicables.</td>
<td>Faible</td>
<td>/</td>
<td>Faible</td>
</tr>
<tr>
<td>Risque mouvement de terrain</td>
<td>Présence de personnel en zone d’aléa moyen à élevé</td>
<td>Modéré à fort</td>
<td>Zone tampon balisée en bord de mer et de talus ; Vigilance accrue lors des périodes de pluie.</td>
<td>Faible</td>
<td>/</td>
<td>Faible</td>
</tr>
</tbody>
</table>

MILIEU NATUREL

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts avant mesures en PHASE TRAVAUX</th>
<th>Impact brut</th>
<th>Mesure d’évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESA</td>
<td>Le développement des espèces végétales invasives est favorisé par le transport de débris et remblais. Destruction de flore patrimoniale sur le littoral et en rivière des Pluies.</td>
<td>Nul (seuil 12, 14, 32) Faible (seuil 30)</td>
<td>Limiter les mouvements de terre depuis ou vers le site. Belisage des zones de chantier et des zones à protéger. Dénoussaiilage mécanique et non chimique.</td>
<td>Nul (seuil 12, 14, 32) Faible (seuil 30)</td>
<td>/</td>
<td>Nul (seuil 12, 14, 32) Faible (seuil 30)</td>
</tr>
<tr>
<td>Littoral</td>
<td>Riske de destruction de nichées d’oiseaux terrestres et de reptiles</td>
<td>Nul</td>
<td>Préparation du terrain en dehors</td>
<td>Faible</td>
<td>/</td>
<td>Faible</td>
</tr>
<tr>
<td>Résédues Pluies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Activités environnantes

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impacts avant mesures en PHASE TRAVAUX</th>
<th>Impact brut</th>
<th>Mesure d'évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tous</td>
<td>Les travaux de nuit demandant des éclairages de chantier sont susceptibles de perturber les oiseaux marins et d’augmenter le taux d’échouage et de mortalité (échouage et collision)</td>
<td>Fort</td>
<td>Eclairage de chantier conforme aux préconisations SEOR. Périodes de vigilance. Sensibilisation du personnel et procédure en cas de découverte d’oiseau échoué.</td>
<td>Modéré</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Tous</td>
<td>Les travaux de nuit demandant des éclairages de chantier sont susceptibles de perturber les oiseaux marins et d’augmenter le taux d’échouage et de mortalité (échouage et collision)</td>
<td>Fort</td>
<td>Eclairage de chantier conforme aux préconisations SEOR. Périodes de vigilance. Sensibilisation du personnel et procédure en cas de découverte d’oiseau échoué.</td>
<td>Modéré</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Tous</td>
<td>Les travaux de nuit demandant des éclairages de chantier sont susceptibles de perturber les oiseaux marins et d’augmenter le taux d’échouage et de mortalité (échouage et collision)</td>
<td>Fort</td>
<td>Eclairage de chantier conforme aux préconisations SEOR. Périodes de vigilance. Sensibilisation du personnel et procédure en cas de découverte d’oiseau échoué.</td>
<td>Modéré</td>
<td>/</td>
<td>Modéré</td>
</tr>
</tbody>
</table>

MILIEU HUMAIN

<table>
<thead>
<tr>
<th>Activité aéroportuaire</th>
<th>Impact</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travaux de nuit en dehors des périodes d’ouverture de l’aéroport.</td>
<td>Faible</td>
<td>/</td>
<td>Faible</td>
</tr>
<tr>
<td>Trafic routier et accès</td>
<td>Modéré</td>
<td>Information préalable des usagers et communication pendant chantier.</td>
<td>/</td>
</tr>
<tr>
<td>Port : Perturbation des activités pendant 5,5 mois.</td>
<td>Modéré</td>
<td>Transfert des embarcations vers les autres quais ou vers un port à sec provisoire durant les travaux. Information préalable des usagers et communication pendant chantier.</td>
<td>/</td>
</tr>
<tr>
<td>Activités environnementales</td>
<td>Modéré</td>
<td>Information préalable des usagers et communication pendant chantier.</td>
<td>/</td>
</tr>
<tr>
<td>Littoral : Fermeture de l’accès au littoral pendant 5 mois / an pendant 5 ans + nuisances des travaux.</td>
<td>Modéré</td>
<td>Information préalable des usagers et communication pendant chantier.</td>
<td>/</td>
</tr>
<tr>
<td>Rivière des Pluies : incidence négligeable sur la pêche aux bichiques.</td>
<td>Négligeable</td>
<td>Pêche de sauvegarde avant détournement ; Travaux hors période de montaison des alevins de bichiques (été austral).</td>
<td>/</td>
</tr>
<tr>
<td>Milieu cible</td>
<td>Impacts avant mesures en PHASE TRAVAUX</td>
<td>Impact brut</td>
<td>Mesure d'évitement ou de réduction</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Bruit</td>
<td>Travaux de nuit donc incidence plus forte.</td>
<td>Faible à modéré</td>
<td>Information préalable des usagers et communication pendant chantier.</td>
</tr>
<tr>
<td>Poussières</td>
<td>Vents dominants : alizés (secteur Sud Sud-Est) donc sens favorable pour les lotissements voisins mais incidence sur les mouvements d’avions</td>
<td>Modéré</td>
<td>Arrosage – barrières opaques Planification des travaux</td>
</tr>
<tr>
<td>Usages de l’eau</td>
<td>Aucun effet sur les usages de l’eau</td>
<td>Négligeable</td>
<td>/</td>
</tr>
<tr>
<td>Réseaux</td>
<td>Aucun effet sur les réseaux</td>
<td>Nul</td>
<td>/</td>
</tr>
<tr>
<td>Patrimoine bâti</td>
<td>Aucun effet sur le patrimoine</td>
<td>Nul</td>
<td>/</td>
</tr>
<tr>
<td>Paysage</td>
<td>RESA</td>
<td>Modéré</td>
<td>Barrières opaques de chantier.</td>
</tr>
<tr>
<td>Littoral</td>
<td>Modéré</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Négligeable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2. MESURES DURANT L’EXPLOITATION

6.2.1. Mesures liées au milieu physique

6.2.1.1. MILIEU PHYSIQUE TERRESTRE

Les mesures durant l’exploitation concernent exclusivement la surveillance de l’ouvrage par le Maître d'Ouvrage et comportent :

- Le suivi régulier (annuel) du lit pour contrôler l’évolution géomorphologique de la Rivière des Pluies ;
- Des visites annuelles et post-crues réalisées par le Maître d’Ouvrage ;
- Si nécessaire, des éventuels travaux de confortement d’urgence (non inclus dans le présent dossier).

6.2.1.2. MILIEU PHYSIQUE MARIN

Le principe d’aménagement d’une carapace de protection ne permet pas d’éviter l’impact sur le cordon littoral à galets. Ce dernier étant entièrement recouvert, le profil de plage sera fortement transformé. Plusieurs mesures compensatoires peuvent être envisagées. Elles sont détaillées dans le chapitre présentant les mesures liées au milieu naturel (fonctionnalité).

6.2.2. Mesures liées au milieu naturel

Le principe d’aménagement d’une carapace de protection ne permet pas d’éviter l’impact sur le cordon littoral à galets. Ce dernier étant entièrement recouvert, le profil de plage sera fortement transformé. Des mesures compensatoires visant à recréer des habitats artificiels à profondeur intermédiaire peuvent être envisagées.

- Suivi de la colonisation des BCR dans les zones sensibles (autour de la station 3) ;
- Immersion de récifs artificiels ;
- Acquisition de connaissances sur les affleurements profonds (>50m) au droit de la zone d’étude.

6.2.3. Mesures liées au milieu humain

Le mur de soutènement de 7 m de haut créé en limite entre l’aéroport et le fond de darse du port constitue un ouvrage imposant et austère.

Une mise en valeur paysagère ou artistique de ce mur devra être réfléchie : par exemple, habillage du mur par un revêtement qualitatif de type coffrage architecturé / revêtement texturé ou végétalisation verticale par le haut (végétation tombante) ou par le bas (espèces grimpantes sur support).

En outre, la mise en place du mur de soutènement empiète sur environ 30 places de parkings le long du remblai actuel. Ces places seront recreées :
6.2.4. Synthèse des mesures en phase exploitation

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impact brut</th>
<th>Impact brut</th>
<th>Mesure d'évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILIEU PHYSIQUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climat</td>
<td>Pas d'impact</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Qualité de l’air</td>
<td>/</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Topographie RESA</td>
<td>Remblais d’une emprise de 80 m x 10 m sur la chaussée du port de Sainte-Marie avec un mur de soutènement de 7 m de haut en limite.</td>
<td>Modéré</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Littoral</td>
<td>Mise en place d’une carapace de protection de 4 m d’épaisseur sur le littoral</td>
<td>Modéré</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Modéré</td>
</tr>
<tr>
<td>Rivière des Pluies RESA</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Sols et sous-sols Littoral</td>
<td>Redistribution granulométrique avec arrachement des matériaux les plus fins vers le large.</td>
<td>Moyen</td>
<td>Moyen</td>
<td>/</td>
<td>/</td>
<td>Moyen</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>RESA</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>MILIEU NATUREL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milieux naturels terrestres</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
<tr>
<td>Milieux naturels d’eau douce</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Nul</td>
</tr>
</tbody>
</table>
MILIEU HUMAIN

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impact brut</th>
<th>Mesure d'évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milieu naturel marin</td>
<td>Suppression du rôle de nurserie du cordon littoral à galets pour certains poissons à valeur commerciale.</td>
<td>Modéré</td>
<td>/</td>
<td>/</td>
<td>Suivi de la colonisation des blocs/BCR ; Immersion et suivi de récifs artificiels ; Acquisition de connaissances sur les affleurements profonds.</td>
</tr>
<tr>
<td>Activité aéroportuaire</td>
<td>Amélioration de la sécurité de l’aéroport.</td>
<td>Positif</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Trafic routier et accès</td>
<td>Suppression d’une trentaine de places de stationnement dans le port de Sainte-Marie.</td>
<td>Modéré</td>
<td>Réintégration de 17 places longitudinales au mur de soutènement.</td>
<td>Faible</td>
<td>/</td>
</tr>
<tr>
<td>Urbanisation</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Activités environnantes</td>
<td>Incidence potentielle indirecte sur la pêche au niveau des affleurements profonds au large de la zone d’étude, lié à la suppression du rôle de nurserie du cordon littoral à galets par la digue de BCR.</td>
<td>Faible à modéré</td>
<td>/</td>
<td>/</td>
<td>Suivi de la colonisation des blocs/BCR ; Immersion et suivi de récifs artificiels ; Acquisition de connaissances sur les affleurements profonds.</td>
</tr>
<tr>
<td>Bruit</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Pollution de l’air – effets sanitaires</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Coûts collectifs</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Consommations énergétiques</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Usages de l’eau</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Réseaux</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Patrimoine bâti</td>
<td>Aucune incidence</td>
<td>Nul</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Paysage

<table>
<thead>
<tr>
<th>Milieu cible</th>
<th>Impact brut</th>
<th>Mesure d’évitement ou de réduction</th>
<th>Impact potentiel</th>
<th>Mesure de compensation ou de suivi</th>
<th>Impact résiduel</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESA</td>
<td>Impact visuel du talus de 7 m de haut donnant sur le port pour le seuil 30. Aucun effet pour les RESA des autres seuils.</td>
<td>Fort</td>
<td>/</td>
<td>Fort</td>
<td>/</td>
</tr>
<tr>
<td>Littoral</td>
<td>Artificialisation du littoral actuellement non aménagé par la pose d’une carapace en BCR, bouchant la vue sur la mer depuis le sentier littoral.</td>
<td>Fort</td>
<td>/</td>
<td>Fort</td>
<td>/</td>
</tr>
<tr>
<td>Rivière des Pluies</td>
<td>Aucun impact s’agissant d’une réhabilitation de l’existant.</td>
<td>Négligeable</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
7. ANALYSE DES MÉTHODES D’ÉVALUATION – DIFFICULTÉES RENCONTREES

7.1. METHODOLOGIE

7.1.1. Méthodologie générale de l’étude d’impact

La démarche d’analyse et le contenu du présent dossier sont conformes aux textes réglementaires en vigueur, notamment Code de l’Environnement.

L’analyse de l’état initial du site s’est appuyée sur :

- Les visites de terrains ;
- Les réponses aux démarches de renseignements adressées aux principales Administrations concernées ;
- Les documents à caractère technique réunis et exploités pour les besoins de l’étude, notamment la bibliographie du groupe ARTELIA (ex SOGREAH) sur la zone d’étude.

L’évaluation des impacts repose sur la confrontation méthodique entre :

- les enjeux identifiés dans l’analyse de l’état initial ;
- les impacts potentiels attendus au regard des caractéristiques techniques des installations.

Cette analyse est réalisée pour chacun des compartiments du milieu (physique, naturel, humain), dans un objectif d’exhaustivité.

L’étude cherche donc à mettre en application les 3 grands principes des études d’impact et de l’évaluation des risques :

- Principe d’exhaustivité de l’analyse ;
- Principe de précaution ;
- Principe de proportionnalité lors de la définition des réponses à donner aux problèmes éventuels posés par l’installation.

7.1.2. Études spécifiques réalisées pour le projet

Dans le cadre du projet, les études spécifiques suivantes ont été réalisées :

- Diagnostic faune / flore (ARTELIA) ;
- Expertise milieu marin (sous-traitance PARETO).
7.2. DIFFICULTÉS RENCONTREES

Les impacts du projet sur l’environnement sont obtenus :

- En croisant les effets constatés des travaux envisagés avec les éléments contenus dans chacune des thématiques correspondantes de l’état initial ;
- En extrapolant les impacts potentiels, par analogie avec les impacts constatés lors d’évaluations relatives à des équipements similaires.

L’étude cherche donc à mettre en application les 3 grands principes des études d’impact et de l’évaluation des risques :

- Principe d’exhaustivité de l’analyse ;
- Principe de précaution ;
- Principe de proportionnalité lors de la définition des réponses à donner aux problèmes éventuels posés par l’installation.

L’application des 3 principes lors de l’analyse des impacts n’a pas donné lieu à des difficultés insurmontables. Quelques difficultés ont été rencontrées dans le traitement de certaines thématiques spécifiques :

- Compte tenu des contraintes temporelles de réalisation de cette étude d’impact, il n’a pas été possible de recueillir tous les retours de consultations des organismes invités à faire part de leurs éventuels commentaires. Les retours reçus avant le premier dépôt du dossier sont présentés dans l’étude d’impact.

- Compte tenu des plannings de réalisation de cette étude d’impact, des prospections naturalistes n’ont pas pu être organisées à deux saisons opposées (investigations en hiver austral). Néanmoins, les prospections réalisées permettent une bonne caractérisation des milieux en place ;

- La présente étude d’impact a été réalisée sur la base d’un AVP en cours de validation.

7.3. AUTEURS DE L’ETUDE

Pour réaliser cette étude, l’intervention d’une équipe de spécialistes a permis de collecter des connaissances sur les différents aspects étudiés afin d’appréhender au mieux le projet étudié.

Les personnes ayant travaillé à la réalisation de cette étude sont :

- Anne-Laure GAUDIEUX, responsable du pôle environnement, pour la gestion globale des dossiers réglementaires du projet ;
- Berenice DIAZ, ingénieur environnement, pour la rédaction du dossier réglementaire ;
- Thomas ROGELJA, ingénieur hydraulique et environnement, pour la rédaction du dossier réglementaire pour les aspects hydrauliques et aquatiques terrestres ;
- Bertrand DENIS, directeur de projet Environnement, pour le volet faune/ flore terrestre ;
Renforcement du littoral et mise en place d'aires de sécurité aux extrémités des pistes (RESA)

Résumé non technique
RAPPORT DEFINITIF

- Isabelle MARIN, technicienne environnement polyvalente, pour l’élaboration des cartographies et les relevés de la faune / flore terrestre ;
- Marie COUTOS THEVENOT de la cellule maritime d’ARTELIA pour le dimensionnement des ouvrages maritimes et l’expertise hydrodynamique ;
- Mathilde FACON et Rémi GARNIER de PARETO pour les expertises sur le milieu marin (état initial, effets et mesures).

oOo