Projet de Captage d’irrigation de Grand Ruisseau – Commune de Cilaos

Dossier d’autorisation au titre du Code de l’Environnement

Mars 2017

A79631/B

Commune de Cilaos - Mairie de Cilaos
66 rue du Père Boiteau
97413 CILAOS
Tél. : 02.62.31.89.89

Présenté par
Antea Group
Agence de la Réunion
Métier Eau
55, rue Jules Auber
97400 SAINT-DENIS
Tél. : 02.62.20.95.88

Ocea Consult’
236Bis, ch. Concession Condé
97432 Ravine des Cabris
Tél. : 06.92.30.54.12
Contexte

En matière d’irrigation, la commune de Cilaos dispose notamment du réservoir du Brûlé marron, situé à 1 170 mètres d’altitude, qui sert à l’irrigation du secteur de Mare Sèche (cf. Figure 5).

Dans le cadre d’une augmentation de ses besoins en eau pour l’irrigation, la commune souhaite engager les démarches réglementaires pour l’exploitation d’un nouveau point de captage qui viendrait alimenter ledit réservoir.

Les éléments de ce projet ont été définis, à savoir :
- L’ouvrage envisagé correspondra à un seuil en béton implanté en travers du cours d’eau, d’environ 1,25 m de hauteur et muni d’une vidange. Le captage consistera en une conduite traversant l’ouvrage et munie d’un embout Crèpiné. L’eau ainsi captée permettra d’alimenter le réservoir par adduction gravitaire avant distribution pour l’irrigation.

Le présent rapport est établi conformément aux articles L214-1 à L214-6 et aux articles R214-1 et suivants, qui définissent notamment la (ou les) rubrique(s) concernée(s) (R214-1) et la constitution du dossier de demande d’autorisation (R214-6).

Il constitue la demande d’autorisation de prélèvement au titre du Code de l’Environnement, au titre des rubriques 1.2.1.0 et 3.1.1.0.

<table>
<thead>
<tr>
<th>RUBRIQUE</th>
<th>TEXTE</th>
</tr>
</thead>
</table>
| 1.2.1.0 | A l’exception des prélèvements faisant l’objet d’une convention avec l’attributaire du débit affecté prévu par l’article L. 214-9 du code de l’environnement, prélèvements et installations ou ouvrages permettant le prélèvement, y compris par dérivation, dans un cours d’eau, dans sa nappe d’accompagnement ou dans un plan d’eau ou canal alimenté par ce cours d’eau ou cette nappe :

1° D’une capacité totale maximale supérieure ou égale à 1 000 m³/heure ou à 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (A) ;

2° D’une capacité totale maximale comprise entre 400 et 1 000 m³/heure ou entre 2 et 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (D). |

<table>
<thead>
<tr>
<th>AUTORISATION</th>
</tr>
</thead>
</table>

| 3.1.1.0 | Installations, ouvrages, remblais et épis, dans le lit mineur d’un cours d’eau, constituant :

1° Un obstacle à l’écoulement des crues (A) ;

2° Un obstacle à la continuité écologique :

a) Entraînant une différence de niveau supérieure ou égale à 50 cm, pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (A) ;

b) Entraînant une différence de niveau supérieure à 20 cm mais inférieure à 50 cm pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (D). |

Au sens de la présente rubrique, la continuité écologique des cours d’eau se définit par la libre circulation des espèces biologiques et par le bon déroulement du transport naturel des sédiments. |

| AUTORISATION |

3
Sommaire

1. RESUME NON TECHNIQUE ... 6
 1.1. PRESENTATION DE L’OUVRAGE .. 6
 1.1.1. Localisation .. 6
 1.1.2. Caractéristiques techniques ... 6
 1.2. REGLEMENTATION .. 7
 1.3. DOCUMENT D’INCIDENCES ... 8
 1.3.1. Etat du milieu ... 8
 1.3.2. Analyse des effets .. 8
 1.3.3. Mesures correctives / compensatoires ... 9
 1.4. MOYENS DE SURVEILLANCE ... 9
 1.5. COMPATIBILITE AVEC LE SDAGE ET LE SAGE ... 9

2. NOM ET ADRESSE DU DEMANDEUR ... 10

3. EMPLACEMENT DU FUTUR OUVRAGE .. 11
 3.1. LOCALISATION GEOGRAPHIQUE .. 11
 3.2. LOCALISATION, SITUATION FONCIERE ET ACCESSIBILITE DU FUTUR CAPTAGE 11

4. NATURE ET CONSISTANCE DE L’OUVRAGE .. 15
 4.1. DESCRIPTIF DES USAGES DE L’OUVRAGE ... 15
 4.2. JUSTIFICATION DE L’OUVRAGE ... 16
 4.3. CARACTERISTIQUES TECHNIQUES DU FUTUR OUVRAGE .. 17
 4.3.1. Caractéristiques techniques du futur captage .. 17
 4.3.2. Caractéristiques du réseau ... 18
 4.3.3. Détermination du débit de prélèvement .. 19

5. RUBRIQUES DE LA NOMENCLATURE CONCERNEES .. 21

6. DOCUMENT D’INCIDENCES ... 23
 6.1. ETAT DU MILIEU .. 23
 6.1.1. Géologie ... 23
 6.1.2. Hydrologie .. 23
 6.1.3. Hydrobiologie .. 24
 6.1.4. Usages ... 26
 6.2. ANALYSE DES EFFETS DU PRELEVEMENT ... 26
 6.2.1. Impact hydraulique sur la ressource en eau ... 26
 6.2.2. Impact sur la continuité biologique .. 27
 6.2.3. Autres impacts .. 29
 6.3. MESURES CORRECTIVES ET COMPENSATOIRES .. 30

7. MODALITES DE SURVEILLANCE .. 32

8. COMPATIBILITE AVEC LES OUTILS DE PLANIFICATION ET DE GESTION DE LA RESSOURCE EN EAU .. 33
 8.1. Le SDAGE 2016-2021 ... 33
 8.2. Le SAGE .. 36

LISTE DES FIGURES
Figure 1 : Localisation de la commune de Cilaos .. 11
Figure 2 : Carte de localisation du futur captage Grand Ruisseau ... 12
Figure 3 : Plan d'accès au futur captage Grand Ruisseau ... 13
Figure 4 : Synoptique du réseau d'alimentation en eau destinée à l'irrigation du secteur de Mare Sèche et du Brûlé Marron ... 15
Figure 5 : Localisation des zones agricoles du secteur de Mare Sèche (source : Mairie de Cilaos) 16
Figure 6 : Vue en plan du projet de création du captage Grand Ruisseau (source : Mairie de Cilaos) 18
Figure 7 : Raccordement à réaliser pour acheminer les eaux du captage Grand Ruisseau à la bâche (source : Mairie de Cilaos) .. 19
Figure 8 : Extrait de la carte géologique de La Réunion du BRGM au 1/50 000ème .. 23
Figure 9 : Localisation des bassins versants du Bras de Benjoin (à la confluence avec la Ravine Kervéguen) et du futur captage Grand Ruisseau ... 24
Figure 10 : Localisation des stations d'inventaire .. 25
Figure 11 : Cascades (à gauche) et chevelu racinaire (à droite), habitat type pour la chevaquine sur la Ravine Kervéguen ... 25
Figure 12 : Zone de frayère potentielle à cabot bouche ronde sur la Ravine Kervéguen (à gauche) et radier sur le Bras de Benjoin (à droite) ... 26
Figure 13 : Schéma de principe, vue de face, aval vers amont, de l'aménagement proposé par la mairie de Cilaos avec la proposition en matière de continuité biologique .. 31
Figure 14 : Schéma de principe de l'échancrure à double pendage .. 31
Figure 15 : Identification des masses d'eau SDAGE 2016-2021 ... 34
Figure 16 : Fiche de synthèse de la masse d'eau FRLR18 ... 35
Figure 17 : Le SAGE SUD à la Réunion .. 37
Figure 18 : Programme d'actions des orientations du SAGE SUD (1/2) .. 38
Figure 19 : Programme d'actions des orientations du SAGE SUD (2/2) ... 39

LISTE DES TABLEAUX
Tableau 1 : Rubriques du Code de l'Environnement concernées par la création du captage Grand Ruisseau 7
Tableau 2 : Synthèse des enjeux milieux et faune aquatiques à proximité du projet de captage 9
Tableau 3 : Coordonnées géographique de l'ouvrage .. 11
Tableau 4 : Photographies de l'environnement du futur captage (source : Antea Group, le 06/03/2015) 14
Tableau 5 : Rubriques du Code de l'Environnement concernées par la création du captage Grand Ruisseau 22
Tableau 6 : Données de référence simulées pour l'estimation des débits (source : Rapport Antea Group C25467) .. 7
Tableau 7 : Estimation des débits moyen journalier (Q moyen) et caractéristique en période d'étiage (DCE) au Grand Ruisseau par la 1ère méthode de calcul des débits ... 8
Tableau 8 : Comparaison des débits mesurés par l'OLE et des débits théoriques d'étiage estimés via la 1ère méthode .. 9

LISTE DES ANNEXES
Annexe 1. Plan projet – Caractéristiques techniques du captage Grand Ruisseau
Annexe 2. Méthodologie et détail des calculs pour la détermination du débit réservé
Annexe 3. Rapport d'OCEA Consult - Etat de la continuité écologique et état initial des peuplements aquatiques
1. Résumé Non Technique

Dans le but de répondre aux besoins du secteur de Mare Sèche en matière d’irrigation, la commune de Cilaos souhaite réaliser un captage d’eau de surface sur la Ravine Kerveguen. Le présent dossier correspond à la demande d’autorisation d’exploitation au titre du Code de l’Environnement.

1.1. Présentation de l’ouvrage

1.1.1. Localisation

L’implantation du futur captage Grand Ruisseau se situe sur la Ravine Kerveguen, au cœur du cirque de Cilaos, entre les villages de Cilaos Ville et Bras Sec. Le site se trouve à environ 1 300 mètres d’altitude.

1.1.2. Caractéristiques techniques

La conception de l’ouvrage et la définition de ses caractéristiques techniques ont été réalisées en interne par les services techniques de la commune de Cilaos.

Il est envisagé la réalisation d’un seuil maçonné de 1,25 mètre de hauteur maximale, avec une prise latérale permettant un prélèvement de 10 l/s. Le reste de l’écoulement franchi l’ouvrage en surverse.

L’ouvrage comprendra :
- Une sortie vers le réseau qui alimentera par gravité, la bâche tampon du réservoir Matarum ;
- Une sortie destinée au débit réservé, calculé à 11 l/s ;
- Une rampe sommaire permettant d’assurer la continuité écologique ;
- Une vanne à vidange.

Une crépine permettra d’éviter la pénétration d’éventuels poissons, crustacés, blocs et branchages dans le réseau d’irrigation.

La prise d’eau correspondra à une conduite en PEHD de diamètre 110 mm, protégée par une conduite en fonte sur les 6 premiers mètres linéaires.

Les débits caractéristiques du cours d’eau ont été déterminés comme les suivants (détail des calculs en annexe) :
- \(D_{\text{moyen journalier}} = 110 \text{ l/s}\)
- \(D_{\text{CE}} = 34 \text{ l/s}\) (Débit Caractéristique en période d’Étiage).

Le débit de prélèvement sera de 10 l/s et le débit réservé sera de 11 l/s.
Projet de captage d’irrigation Grand Ruisseau - Commune de Cilaos – Dossier d’autorisation au titre du Code de l’Environnement

ANTEA GROUP

1.2. Règlementation

Au titre du Code de l’Environnement (partie Législative) – Chapitre IV - Section 1 – Articles L214-1 à L214-6, tout captage d’eau est soumis à déclaration (D) ou à autorisation (A).

Les rubriques de la nomenclature concernée par le projet de réalisation d’un ouvrage de prélèvement d’eau de surface sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Régime concernés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.0</td>
<td>AUTORISATION</td>
</tr>
</tbody>
</table>
| A l’exception des prélèvements faisant l’objet d’une convention avec l’attributaire du débit affecté prévu par l’article L. 214-9 du code de l’environnement, prélèvements et installations et ouvrages permettant le prélèvement, y compris par dérivation, dans un cours d’eau, dans sa nappe d’accompagnement ou dans un plan d’eau ou canal alimenté par ce cours d’eau ou cette nappe :
| 1° D’une capacité totale maximale supérieure ou égale à 1 000 m³/heure ou à 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (A) ;
| 2° D’une capacité totale maximale comprise entre 400 et 1 000 m³/heure ou entre 2 et 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (D). |
| 3.1.1.0 | AUTORISATION |
| Installations, ouvrages, remblais et épis, dans le lit mineur d’un cours d’eau, constituant :
| 1° Un obstacle à l’écoulement des crues (A) ;
| 2° Un obstacle à la continuité écologique :
| a) Entraînant une différence de niveau supérieure ou égale à 50 cm, pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (A) ;
| b) Entraînant une différence de niveau supérieure à 20 cm mais inférieure à 50 cm pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (D). |
| Au sens de la présente rubrique, la continuité écologique des cours d’eau se définit par la libre circulation des espèces biologiques et par le bon déroulement du transport naturel des sédiments. |
| 3.1.2.0 | DECLARATION |
| Installations, ouvrages, travaux ou activités conduisant à modifier le profil en long ou le profil en travers du lit mineur d’un cours d’eau, à l’exclusion de ceux visés à la rubrique 3.1.4.0, ou conduisant à la dérivation d’un cours d’eau :
| 1° Sur une longueur de cours d’eau supérieure ou égale à 100 m (A) ;
| 2° Sur une longueur de cours d’eau inférieure à 100 m (D). |
| Le lit mineur d’un cours d’eau est l’espace recouvert par les eaux coulant à pleins bords avant débordement. |
| 3.1.5.0 | DECLARATION |
| Installations, ouvrages, travaux ou activités, dans le lit mineur d’un cours d’eau, étant de nature à détruire les frayères, les zones de croissance ou les zones d’alimentation de la faune piscicole, des crustacés et des batraciens :
| 1° Destruction de plus de 200 m² de frayères (A) ;
| 2° Dans les autres cas (D). |

Tableau 1 : Rubriques du Code de l’Environnement concernées par la création du captage Grand Ruisseau

Le captage est soumis à Autorisation au titre des rubriques 3.1.1.0 et 1.2.1.0 du Code de l’Environnement.
1.3. **Document d’incidences**

1.3.1. **Etat du milieu**

1.3.1.1. **Géologie**

Les formations géologiques rencontrées au droit du futur captage Grand Ruisseau sont des lahar, tufs, éboulis et éluvions du cirque de Cilaos. Ces formations sont globalement très peu perméables.

1.3.1.2. **Hydrologie**

Le projet de captage Grand Ruisseau est situé sur la Ravine Kerseguen, affluent du Bras de Benjoin, lui-même affluent du Grand Bras de Cilaos.

1.3.1.3. **Environnement**

L’environnement du captage correspond à une zone naturelle forestière. Un inventaire des peuplements aquatiques a été réalisé par OCEA Consult en 2015 et a permis d’évaluer les enjeux pour les différents milieux et pour la faune à proximité du futur captage. L’enjeu lié aux espèces piscicoles est très faible en raison des cascades et obstacles situés à l’aval.

1.3.2. **Analyse des effets**

1.3.2.1. **Impacts hydrauliques sur la ressource**

Le futur captage n’aura pas d’incidence quantitative ni qualitative sur la ressource en eau souterraine.
Il pourra provoquer une modification du profil en long du cours d’eau mais n’entraînerait aucune modification du profil en travers.
Il aura une incidence qualitative forte sur le débit de la ravine à l’aval immédiat du captage.

1.3.2.2. **Impacts biologiques**

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Enjeux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milieux</td>
<td></td>
</tr>
<tr>
<td>Etablissement et maintien d’un peuplement de macro-invertébrés</td>
<td>Fort : typologie des milieux dans une zone forestière relativement préservée favorable au développement des peuplements de macro-invertébrés</td>
</tr>
<tr>
<td>Grossissement de poissons et macro-crustacés</td>
<td>Faible : colonisation naturellement limitée par la cascade du Cap Noir pour les poissons, seule la chevaquine Atyoida serrata est susceptible de coloniser le secteur.</td>
</tr>
<tr>
<td>Reproduction de poissons et macro-crustacés</td>
<td>Faible : Malgré la présence de zone de frayère à cabots bouche-rondes colonisation naturellement limité par la cascade du Cap Noir pour les poissons, les enjeux sont potentiels pour la chevaquine Atyoida serrata</td>
</tr>
<tr>
<td>Faune observée</td>
<td></td>
</tr>
<tr>
<td>Macro-invertébrés</td>
<td>Fort : présence de taxons patrimoniaux dont un endémique de la Réunion</td>
</tr>
<tr>
<td>Poissons et macro-crustacés</td>
<td>Faibles : actuellement inexistant mais potentiel pour la chevaquine Atyoida serrata</td>
</tr>
</tbody>
</table>
Le seuil de captage aura un impact sur la continuité biologique, notamment en ce qui concerne la continuité de circulation de la faune invertébrée et potentiellement sur la chevaquine si recolonisation.

Le seuil ne sera pas un obstacle à la continuité biologique. Il devra être équipé d'une rampe rustique de type "faune aquatique" permettant le franchissement des crustacés, mollusques, et la dévalaison de tout type de faune aquatique (flux d'individus et de gènes).

En raison des débits du cours d'eau, de la configuration du lit et des enjeux identifiés, il n’apparaît pas le besoin de définir un débit minimum biologique d’une valeur supérieure au débit plancher de 1/10ème du module du cours d’eau.

1.3.3. Mesures correctives / compensatoires

Afin de pallier aux incidences identifiées du futur captage et de respecter la réglementation en vigueur en matière de débits réservés, des propositions d’aménagement ont été présentées, à savoir :
- Mettre en place une rampe rustique permettant le franchissement de l’ouvrage par les poissons, macro-crustacés et macro-invertébrés ;
- Permettre l’écoulement permanent à l’aval de l’ouvrage, d’un débit réservé de 11 l/s.

1.4. Moyens de surveillance

L’état du captage devra être régulièrement vérifié et les éventuels blocs et branchages devront être évacués. La crêpine pourra être nettoyée manuellement. Le débit prélevé fera l’objet d’un comptage. Un dispositif de contrôle du débit réservé (échelle limnimétrique) pourra être mis en place après étude de faisabilité technique à réaliser.

1.5. Compatibilité avec le SDAGE et le SAGE

2. Nom et adresse du demandeur

Commune de Cilaos
Mairie de Cilaos
66, rue du Père Boiteau
97413 CILAOS
Représenté par son maire : Paul Franco Techer
N°SIRET : 219-740-248 00014
APE : 8411Z (Administration publique générale)
3. Emplacement du futur ouvrage

3.1. Localisation géographique

![Figure 1: Localisation de la commune de Cilaos](image)

La commune de Cilaos se situe au centre du département de la Réunion, dans le cirque naturel du même nom, dans la partie sud du massif du Piton des Neiges. Elle couvre une superficie d’environ 8 440 ha.

3.2. Localisation, situation foncière et accessibilité du futur captage

L’emplacement retenu pour la réalisation du captage Grand Ruisseau est présenté sur la Figure 2. Il se situe sur le ruisseau Kerveguen à environ 1 km au nord-est de la ville de Cilaos et à environ 1 km au nord-ouest de Bras-Sec.

Les coordonnées géographiques de l’ouvrage sont :

<table>
<thead>
<tr>
<th>RGR92 UTM 40</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X (m)</td>
<td>342 955</td>
</tr>
<tr>
<td>Y (m)</td>
<td>7 662 810</td>
</tr>
</tbody>
</table>

Tableau 3 : Coordonnées géographique de l’ouvrage

L’emplacement se situe à environ 1 300 mètres d’altitude.
Figure 2 : Carte de localisation du futur captage Grand Ruisseau

Le futur captage Grand Ruisseau sera situé sur la parcelle cadastrale AK 61 du cadastre de Cilaos, d’une superficie totale de 211 500 m².

L’emplacement du captage est actuellement situé en zone naturelle (N) du Plan Local d’Urbanisme (PLU) de Cilaos.

Il est situé en dehors de l’aire du cœur de parc du Parc National de la Réunion, dont l’emprise commence globalement à l’amont de la route de Bras Sec.

L’accès au captage s’effectue en empruntant la route D 241 allant de Cilaos vers Bras Sec, puis la route forestière située à droite, peu de temps après le départ du sentier du bloc (GR2), puis à droite au croisement suivant. Au bout de cette route, il convient d’emprunter le sentier pour rejoindre le point de captage.
Figure 3 : Plan d’accès au futur captage Grand Ruisseau

Les photographies suivantes présentent l’environnement du captage.
Tableau 4 : Photographies de l'environnement du futur captage (source : Antea Group, le 06/03/2015)
4. Nature et consistance de l’ouvrage

4.1. Descriptif des usages de l’ouvrage

La création de cet ouvrage s’inscrit dans le but de la commune de Cilaos, de répondre aux besoins du secteur de Mare Sèche en matière d’irrigation afin de préserver les autres ressources captées et destinées à l’usage eau potable.

Ce captage viendra alimenter le réservoir du Brûlé Marron par l’intermédiaire de la bâche du réservoir Matarum, déjà alimentée par les captages Avalasse, Petit Matarum, et Kerveguen.

Il s’inscrit ainsi dans le synoptique du réseau d’alimentation en eau destinée à l’irrigation du secteur de Mare Sèche présenté à la Figure 4.

L’implantation du captage Grand Ruisseau est localisée sur le ruisseau Kerveguen, en amont de la source Grand Ruisseau.

Figure 4 : Synoptique du réseau d’alimentation en eau destinée à l’irrigation du secteur de Mare Sèche et du Brûlé Marron
4.2. Justification de l’ouvrage

Actuellement, les superficies irriguées sur le secteur de Mare Sèche correspondent à 89 hectares (cf. Figure 5).

Cependant, il est estimé qu’à l’avenir, près de 45 hectares supplémentaires viennent compléter ces besoins. À ce jour, le réseau d’alimentation en eau pour l’irrigation de Mare Sèche repose sur le réservoir du Brûlé Marron, d’une capacité de 750 m³.

D’après les informations communiquées par la Mairie de Cilaos, la consommation totale pour l’irrigation sur le secteur de Mare Sèche de 2012 à 2014 était de 403 078 m³ sur les 3 années, soit environ 135 000 m³ par an. L’adéquation ressources/besoins actuelle n’est pas satisfaite.

A titre de comparaison, en l’absence de calculs précis, l’Evapotranspiration Potentielle atteint de 2 à 3 mm/j en saison sèche sur ce secteur de l’île. En considérant sur cette période, uniquement un apport d’irrigation de 1 mm/j, soit 1 l/m²/j, le besoin en eau est de 890 m³/j pour les 89 ha irrigués, soit sur 6 mois de saison sèche dans l’année, un besoin en eau de 160 200 m³, à comparer aux 135 000 m³ moyen consommés sur l’année.

Avec 45 ha de plus à irriguer, le besoin en eau serait, sur les mêmes bases de 1340 m³/j. Aussi, la commune estime que, pour répondre aux besoins en matière d’irrigation, une augmentation est nécessaire pour délivrer, de l’eau destinée à l’irrigation du secteur de Mare Sèche.

Sur la base de la ressource disponible du cours d’eau, en tenant compte de la nécessité de maintenir à l’aval un débit réservé, et dans une logique de ne mettre en œuvre qu’un prélèvement limité en attente d’un retour d’expérience de la satisfaction des besoins en eau d’irrigation du secteur, il a été convenu de retenir un prélèvement maximum de 10 l/s, soit 864 m³/j.
4.3. Caractéristiques techniques du futur ouvrage

Le futur captage Grand Ruisseau consistera en une prise d’eau qui alimentera par gravité la bâche de stockage destinée à l’irrigation.

Cette bâche alimente ensuite, via une conduite d’adduction destinée uniquement à l’irrigation, le réservoir du Brûlé marron, qui sert à l’irrigation du secteur de Mare Sèche.

4.3.1. Caractéristiques techniques du futur captage

La conception de l’ouvrage et la définition de ses caractéristiques techniques ont été réalisées en interne par les services techniques de la commune de Cilaos.

Les caractéristiques techniques de l’ouvrage du futur captage Grand Ruisseau sont détaillées sur le plan du projet, présenté en annexe 1 et fourni par la commune.

Il s’agira de réaliser un ouvrage composé d’un seuil maçonné avec une surverse et une prise latérale, où l’eau sera prélevée.

L’ouvrage comportera trois sorties :
- La sortie « réseau » qui alimentera par gravité la bâche tampon ;
- La sortie destinée à maintenir un débit réservé ;
- Une vanne de vidange.

Les dimensions de l’ouvrage seront les suivantes :
- Largeur maximale = 3,78 m ;
- Hauteur maximale = 1,25 m ;
- Epaisseur du mur : 0,70 m ;
- Diamètre de la prise d’eau : 110 mm ;
- Dimensions de la vanne de vidange : 0,43 m x 0,41 m ;
- Diamètre de la vanne pour les débits réservé : 110 mm.

La prise d’eau sera protégée par une crépine adaptée à la granulométrie attendue. Cette crépine permettra d’éviter la pénétration de crustacés, blocs et branchages dans le réseau d’irrigation.

La conduite correspondant à la prise d’eau (PEHD de diamètre 110 mm) sera protégée sur les 6 premiers mètres linéaires par une conduite en fonte de diamètre 150 mm.

Le schéma de principe présenté à la Figure 6 permet d’illustrer le futur ouvrage de captage Grand Ruisseau.

Conformément à l’identification des enjeux environnementaux de continuité biologique, l’ouvrage sera franchissable par les espèces présentes, via une rampe sommaire aménagé latéralement à l’ouvrage.
4.3.2. Caractéristiques du réseau

L’eau prélevée au captage Grand Ruisseau sera acheminée via un réseau d’adduction gravitaire constituée d’une conduite en PEHD de diamètre 110 mm vers la bâche puis le réservoir Brûlé Marron destiné à l’irrigation du secteur de Mare Sèche. Le linéaire de canalisation est estimé à 2300 m.

La distribution entre la bâche et le réservoir du Brûlé marron s’effectue par le biais d’une canalisation en fonte existante (diamètre 200 mm).

Le tracé prévisionnel du raccordement, à réaliser, du captage à la bâche est présenté à la Figure 7.
Figure 7 : Raccordement à réaliser pour acheminer les eaux du captage Grand Ruisseau à la bâche (source : Mairie de Cilaos)

4.3.3. Détermination du débit de prélèvement

D’après les éléments de besoin en eau actuels non satisfaits et avec 45 ha de plus à irriguer, le besoin en eau serait, de 1340 m3/j. Les prélèvements actuels sont largement insuffisants puisque les données de consommation sont globalement de l’ordre de 370 m3/j. Le besoin serait en moyenne de 970 m3/j soit 11,2 l/s.

Ce besoin a été comparé à la ressource disponible du ruisseau Kervegen. En l’absence de données hydrologiques de cette ravine, différentes approches ont été menées pour déterminer les débits caractéristiques de la ressource. Ces approches sont identiques à celles mises en œuvre pour la régularisation réglementaire des autorisations des captages AEP de la commune. Le détail est donné en annexe.

Bien entendu parallèlement à ces approches sur les débits caractéristiques de la ressource, ont été menées les évaluations en matière de valeur de débit plancher du débit réservé à maintenir à l’aval du prélèvement.

Les débits caractéristiques estimés au futur captage Grand Ruisseau sont (cf. annexe) :
- $DCE_{moyen} = 34$ l/s ;
- $Q_{journalier moyen} = 110$ l/s.
L’article L214-18 du Code de l’Environnement (inséré par Loi n° 2006-1772 du 30 décembre 2006 art. 6 I Journal Officiel du 31 décembre 2006) précise que tout ouvrage à construire dans le lit d’un cours d’eau doit comporter des dispositifs maintenant dans ce lit un débit minimal garantissant en permanence la vie, la circulation et la reproduction des espèces vivant dans les eaux au moment de l’installation de l’ouvrage ainsi que, le cas échéant, des dispositifs empêchant la pénétration du poisson dans les canaux d’aménée et de fuite.

Conformément au volet réglementaire du Code de l’environnement associé à ces dispositions, il est défini un débit plancher du débit réservé correspondant à 10% du module du cours d’eau.

Dans le cas présent, où le débit moyen journalier du cours d’eau au futur captage a été estimé à 110 l/s, le débit plancher devra donc être égal à 10 % de cette valeur, soit 11 l/s.

Sur la base de la ressource disponible du cours d’eau, le DCE moyen étant estimé à 34 l/s, en tenant compte de la nécessité de maintenir à l’aval une valeur plancher du débit réservé de 11 l/s, et dans une logique de ne mettre en œuvre qu’un prélèvement limité en attente d’un retour d’expérience de la satisfaction des besoins en eau d’irrigation du secteur, il a été convenu de retenir un prélèvement maximum de 10 l/s, soit 864 m³/j.

Le débit de prélèvement maximum du futur captage Grand Ruisseau sera donc de 10 l/s.
5. Rubriques de la nomenclature concernées

Au titre du Code de l’Environnement, un ouvrage de prélèvement d’eau souterraine ou superficielle ne peut être mis en service qu’après aboutissement des procédures rappelées ci-dessous.

Au titre du Code de l’Environnement (partie Législative) – Chapitre IV - Section 1 – Articles L214-1 à L214-6, tout captage d’eau est soumis à déclaration (D) ou à autorisation (A).
La rubrique de la nomenclature concernée au titre du Code de l’Environnement (partie réglementaire), est définie au Livre II, Titre Ier, Chapitre IV, Section 1, Article R214-1.

Les rubriques de la nomenclature concernée par le projet de réalisation d’un ouvrage de prélèvement d’eau de surface sont présentées dans le tableau suivant.

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Régime concernés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1.0 TITRE 1 – Prélèvements</td>
<td>AUTORISATION Capacité totale de 10 % du module du cours d’eau et de 30% du débit d’étiage</td>
</tr>
<tr>
<td>A l’exception des prélèvements faisant l’objet d’une convention avec l’attributaire du débit affecté prévu par l’article L. 214-9 du code de l’environnement, prélèvements et installations et ouvrages permettant le prélèvement, y compris par dérivation, dans un cours d’eau, dans sa nappe d’accompagnement ou dans un plan d’eau ou canal alimenté par ce cours d’eau ou cette nappe :</td>
<td></td>
</tr>
<tr>
<td>1° D’une capacité totale maximale supérieure ou égale à 1 000 m³/heure ou à 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (A) ;</td>
<td></td>
</tr>
<tr>
<td>2° D’une capacité totale maximale comprise entre 400 et 1 000 m³/heure ou entre 2 et 5 % du débit du cours d’eau ou, à défaut, du débit global d’alimentation du canal ou du plan d’eau (D).</td>
<td></td>
</tr>
<tr>
<td>3.1.1.0 TITRE 3 - IMPACTS SUR LE MILIEU AQUATIQUE OU SUR LA SÉCURITÉ PUBLIQUE</td>
<td>AUTORISATION La hauteur du seuil est de 1,25 m</td>
</tr>
<tr>
<td>Installations, ouvrages, remblais et épis, dans le lit mineur d’un cours d’eau, constituant :</td>
<td></td>
</tr>
<tr>
<td>1° Un obstacle à l’écoulement des crues (A) ;</td>
<td></td>
</tr>
<tr>
<td>2° Un obstacle à la continuité écologique :</td>
<td></td>
</tr>
<tr>
<td>a) Entraînant une différence de niveau supérieure ou égale à 50 cm, pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (A) ;</td>
<td></td>
</tr>
<tr>
<td>b) Entraînant une différence de niveau supérieure à 20 cm mais inférieure à 50 cm pour le débit moyen annuel de la ligne d’eau entre l’amont et l’aval de l’ouvrage ou de l’installation (D).</td>
<td></td>
</tr>
<tr>
<td>Au sens de la présente rubrique, la continuité écologique des cours d’eau se définit par la libre circulation des espèces biologiques et par le bon déroulement du transport naturel des sédiments.</td>
<td></td>
</tr>
</tbody>
</table>
Rubriques du Code de l'Environnement concernées par la création du captage Grand Ruisseau

Le captage est soumis à **Autorisation** au titre des rubriques 3.1.1.0 et 1.2.1.0 du Code de l'Environnement.

Par ailleurs au titre de l’article R122-2 du Code de l’Environnement, le projet de captage de Grand Ruisseau est soumis à étude d’impact.

«Art. R122-2. Les travaux, ouvrages ou aménagements énumérés dans le tableau annexé au présent article sont soumis à une étude d’impact soit de façon systématique, soit après un examen au cas par cas, en fonction des critères précisés dans ce tableau »

Le projet présenté par ce dossier est concerné par les catégories suivantes du tableau annexé ci-dessus mentionné :

- **13°.c - Projets d’hydraulique agricole, y compris projets d’irrigation et de drainage de terre** : Travaux d’irrigation nécessitant un prélèvement permanent.
- **19° - Ouvrages servant au transfert d’eau**.
6. Document d’incidences

6.1. État du milieu

6.1.1. Géologie

Les formations géologiques rencontrées au droit du futur captage Grand Ruisseau correspondent à des formations détritiques, tufs, lahars, éboulis et éluvions du cirque de Cilaos.

![Figure 8: Extrait de la carte géologique de La Réunion du BRGM au 1/50 000ème](image)

6.1.2. Hydrologie

6.1.2.1. Contexte hydrologique

Le cours d’eau est alimenté à la fois, par les eaux de pluie, via le ruissellement superficiel au sein du bassin versant topographique et des résurgences d’eau souterraine en pied de rempart.

La Ravine Kerveguen est un affluent du Bras de Benjoin lui-même affluent du Grand Bras de Cilaos.
6.1.2.2. Bassin versant

Le bassin versant topographique est présenté à la Figure 9. La superficie de ce bassin versant est d’environ 2,1 km².

![Figure 9: Localisation des bassins versants du Bras de Benjoin (à la confluence avec la Ravine Kerveguen) et du futur captage Grand Ruisseau](image)

6.1.3. Hydrobiologie

La caractérisation de l’état initial dans la zone d’implantation du projet de captage, repose sur l’échantillonnage de deux stations :

- L’une au futur emplacement du projet de captage ;
- La seconde sur le bras de Benjoin, en aval de la confluence avec la Ravine Kerveguen.

L’inventaire de faune aquatique s’est appuyé sur l’échantillonnage de deux groupements :

- les macro-invertébrés qui ont été échantillonnés au filet Surber normalisé ;
- les poissons et macro-crustacés, échantillonnés par pêche électrique.
Figure 10 : Localisation des stations d’inventaires

L’étude des habitats disponibles a permis d’identifier les groupements d’espèces attendus au droit du futur captage.

Il apparaît que pour les macro-invertébrés, une dominance des taxons rhénophiles (qui aiment le courant) est attendue.

Les deux stations décrites présentes des zones favorables aux cabots bouche-ronde, à la croissance des poissons et de la chevaquine.

Figure 11 : Cascades (à gauche) et chevelu racinaire (à droite), habitat type pour la chevaquine sur la Ravine Kervéguen
Figure 12 : Zone de frayère potentielle à cabot bouche ronde sur la Ravine Kervéguen (à gauche) et radier sur le Bras de Benjoin (à droite)

Concernant les macro-invertébrés, le peuplement de la zone à proximité du captage est dominé par les taxons rhéophiles (espèces inféodées aux zones de fortes vitesses).

Les espèces limnophiles, préférant les eaux calmes, sont présentes sur la zone, à la faveur des vasques de réception des cascades et sur les faciès plats au niveau du bras de Benjoin.

Aucun poisson ou macro-crustacé indigène n’a été capturé malgré la présence historique de la chevaquine dans la zone et malgré le fait que le tronçon soit régulièrement aleviné par la Fédération de pêche.

6.1.4. Usages

6.2. Analyse des effets du prélèvement

6.2.1. Impact hydraulique sur la ressource en eau

6.2.1.1. Incidence quantitative sur les eaux souterraines

Il n’y a pas de ressource en eau souterraine d’envergure ou exploitée dans la zone où sera implanté le captage.

Le captage constitue un prélèvement d’une partie des résurgences des aquifères de plateaux, mais n’a pas d’incidence quantitative à l’amont puisque les volumes captés s’écoulent naturellement dans la ravine. Aucune zone d’infiltration n’est constatée à l’aval du captage. Le prélèvement des eaux de surface n’a pas de conséquences sur les eaux souterraines.

6.2.1.2. Incidence qualitative sur les eaux souterraines

Les prélèvements d’eaux superficielles par les captages de Cilaos n’ont pas d’incidence sur la qualité des eaux souterraines à l’amont ou à l’aval hydraulique, notamment du fait de l’absence incidence quantitative.
6.2.1.3. Modification du profil en long du cours d'eau

L'ouvrage du captage Grand Ruisseau consiste en un ouvrage maçonné de 1,25 m de hauteur. L'ouvrage provoquera une montée du niveau d'eau au droit de l'ouvrage. Compte tenu de la pente du lit du cours d'eau, l'impact est limité à moins de 10 mètres de longueur.

6.2.1.4. Modification du profil en travers

Les ouvrages de captage et leur fonctionnement n'ont aucun impact sur le profil en travers.

6.2.1.5. Incidence quantitative sur le débit du cours d'eau

Le prélèvement sur le captage Grand Ruisseau aura une incidence forte sur le débit de la ravine à l'aval immédiat du captage, en particulier en période d'étiage.

Le Débit Caractéristique d’Etiage a été estimé à 34 l/s. Le module du cours d’eau est estimé à 110 l/s. Le prélèvement représente de l’ordre de 10 % du débit moyen du cours d’eau et 30% du débit d’étiage. La valeur de débit plancher en matière de débit réservé est de 10% du module soit 11 l/s.

Il n’y a pas d’autre captage sur ce cours d’eau à l’aval.

Seul le captage du Grand Bras de Cilaos à la sortie du Cirque (Pavillon) pourrait être influencé. Cet ouvrage capte un débit de l’ordre de 1 m³/s. Le captage Grand Ruisseau ne représenterait au maximum que 1 % de la ressource prélevée.

Le prélèvement n’entraîne aucun déséquilibre de la ressource.

6.2.1.6. Impact sur les inondations

Le seuil du fait de sa hauteur limitée et de sa faible emprise n’aura pas d’impact sur les inondations. Il ne constitue pas une retenue mais un captage au fil de l’eau.

6.2.2. Impact sur la continuité biologique

Le rapport complet d’OCEA Consult qui dresse l’état de la continuité écologique et l’état initial des peuplements aquatiques du cours d’eau est présenté en annexe.

6.2.2.1. Obstacles à la continuité écologique

Plusieurs obstacles à la continuité écologique sont recensés en aval du futur barrage Grand Ruisseau.

Le captage du Grand Bras de Cilaos au Pavillon (377 m d’altitude) perturbe de manière significative la colonisation du bassin versant par la faune migratrice.

En amont de cet ouvrage, la cascade du Cap Noir représente une chute d’eau estimée à 30 ou 40 mètre de hauteur.
Cette chute constitue une barrière naturelle limitant fortement la colonisation des espèces de poissons et de crustacés diadromes.

En effet, elle se comporte comme :
- une barrière totale ou quasi-totale pour les cabots bouche-rondes et les anguilles ;
- une barrière partielle à fort impact pour la chevaquine *Atyoida serrata*, qui est tout de même susceptible de coloniser la zone du projet de captage.

6.2.2.2. Synthèse des enjeux des milieux et de la faune aquatique

En raison de milieux favorables à la réalisation du cycle total des macro-invertébrés (espèces avec une phase de vie aérienne et strictement aquatique) et d’un peuplement actuel et récent présentant un intérêt patrimonial, **les enjeux sur la Ravine Kerveguen et sur le Bras de Benjoin sont forts pour ce groupement.**

Concernant les poissons et les macro-invertébrés, malgré la présence de milieux favorables à leur grossissement et à leur reproduction, **les enjeux pour ce groupement peuvent être qualifiés de faibles** en raison de la limitation de la colonisation par la cascade du Cap Noir.

Cependant, la chevaquine était historiquement présente sur le secteur et peut potentiellement recoloniser la zone.

De fait, il est important de maintenir les écoulements en eau toute ou partie de l’année en aval de l’ouvrage afin de maintenir la continuité écologique des espèces.

Le captage aura toutefois un impact sur la continuité biologique notamment en ce qui concerne la faune invertébrée et potentiellement la chevaquine si recolonisation.

Le seuil ne doit donc pas constituer un obstacle à la continuité écologique et devra être équipé d’une rampe rustique permettant le franchissement et la dévalaison par la faune aquatique (crustacés, mollusque).

En conclusion, les enjeux pour la faune aquatique sont limités aux invertébrés benthiques et à une recolonisation potentielle par la chevaquine *A. serrata*. Ces éléments ne permettent pas de statuer sur un débit biologique nécessaire. Il est en revanche important de maintenir les écoulements en eau toute ou partie de l’année en aval de l’ouvrage.

Il est donc proposé de limiter la détermination des débits minimum biologiques à la valeur de débit plancher comme valeur de débit réservé.
6.2.3. Autres impacts

6.2.3.1. Les nuisances sonores

Cet ouvrage de captage et sa canalisation de transport ne comprendront pas d’installations sonores. Des nuisances pourront être occasionnées de façon temporaire lors de la réalisation de l’ouvrage.

La chute d’eau générée par la mise en place d’un seuil de 1,25m de haut, n’engendrera pas de nuisances sonores.

6.2.3.2. Les déchets

Les seuls déchets présents dans ce milieu sont des débris naturels provenant des branchages environnant. Ceux-ci peuvent être importants lors de fort vent. Cette accumulation peut entraver le bon écoulement au niveau du seuil lors des périodes de faibles débits, il nécessite alors un déblaiement manuel.

6.2.3.3. L’impact sur le sol et le sous sol

Le seuil n’impactera ni le sol ni le sous-sol.

6.2.3.4. L’impact sur le climat

Aucun cycle intervenant sur le climat n’est perturbé par la présence de l’ouvrage dans le milieu.

6.2.3.5. L’utilisation rationnelle de l’énergie

Le fonctionnement du captage en lui-même n’a pas besoin de source d’énergie. Le transfert de l’eau du captage vers les différents réservoirs se fera par adduction gravitaire.

6.2.3.6. L’impact sur le trafic routier

L’implantation de l’ouvrage est située à près de 500 mètres en aval de la route la plus proche. Le seuil n’aura aucun impact sur le trafic routier.

6.2.3.7. Impacts temporaires liés aux travaux

Les travaux de réalisation d’un tel seuil sont courts et ne mobilisent pas de moyens importants.

Il s’agit essentiellement de moyens humains visant à préparer le site du seuil :
- purger des blocs en place ;
- réalisation des coffrages de maçonnerie ;
- canalisation provisoire des eaux de la ravine sur une dizaine de mètres ;
- coulage du béton du seuil qui sera livré par héliportage. Le volume du béton est estimé à 1,6 m³.

L’acheminement des tronçons de canalisation et du matériel nécessaire à la confection des plots se fera par voie héliportée. La canalisation sera aérienne (sans creusement, ni enfouissement). L’accès
aux sites des moyens humains (équipe réduite) se fera par voie pédestre. La pose de canalisation nécessitera le déboisement de quelques mètres de part et d’autre de la canalisation.

6.2.3.8. Impacts permanents liés aux travaux

La construction de l’ouvrage, le déploiement de la canalisation de transfert sans enfouissement et l’exploitation de la prise d’eau ne sont pas de nature à modifier les compositions et stabilités des sols et sous-sols existants.

L’installation ne générera pas de déchet ou d’émission de produits autres que les hydrocarbures liés au transport des matériaux (hélicoptère).

Le captage constitue un prélèvement d’une partie des résurgences des aquifères de plateaux, mais n’a pas d’incidence quantitative à l’amont puisque les volumes captés s’écoulent naturellement dans la ravine.

Les prélèvements d’eaux superficielles par les captages de Cilaos n’ont pas d’incidence sur la qualité des eaux souterraines à l’amont ou à l’aval hydraulique. En effet, aucune zone d’infiltration n’est présente à l’aval hydraulique du projet.

L’ouvrage du captage Grand Ruisseau consiste en un ouvrage maçonné de 1,25 m de hauteur. L’ouvrage provoquera une montée du niveau d’eau au droit de l’ouvrage. Compte tenu de la pente du lit du cours d’eau, l’impact est limité à moins de 10 mètres de longueur.

Les impacts permanents liés aux travaux de réalisation du captage et de la pose de canalisation sont estimés comme faibles à nuls.

6.3. Mesures correctives et compensatoires

Au regard des résultats de l’analyse des effets présentée ci avant, le seuil n’a que très peu d’effet sur l’environnement (aucun impact remarquable hormis ponctuellement sur le profil en long du cours d’eau), cependant, il convient de réaliser des aménagements afin de permettre la continuité écologique et biologique au sein du cours d’eau.

Une rampe sera aménagée latéralement à l’ouvrage dans le but de maintenir la continuité biologique et écologique à l’amont et à l’aval du futur captage Grand Ruisseau.

Celle-ci pourra être réalisée en s’appuyant sur la topographie existante et consistera en la réalisation d’une échancrure à double pendage au niveau de la retenue maçonnée, en rive droite telle qu’illustrée sur la figure suivante.

Les débits réservés seraient délivrés à l’aval du captage par la vanne prévue à cet effet.
Figure 13 : Schéma de principe, vue de face, aval vers amont, de l’aménagement proposé par la mairie de Cilaos avec la proposition en matière de continuité biologique

Principe échancrure à double pendage

Figure 14 : Schéma de principe de l’échancrure à double pendage
7. Modalités de surveillance

Il conviendra de réaliser des passages réguliers sur le site du seuil, une fois réalisé, afin de vérifier son état et éventuellement débroussailler les éventuelles accumulations de branchages et/ou de blocs. Un nettoyage manuel de la crépine pourra également être effectué.

Une bride sera mise en place sur l’adduction de manière à limiter le débit prélevé de 10 l/s maximum.

Un dispositif de comptage sera installé sur l’adduction à l’amont de la bâche.

Un dispositif de contrôle (échelle graduée) sera implanté et calé à l’aval de l’ouvrage permettant le contrôle du débit réservé.
8. Compatibilité avec les outils de planification et de gestion de la ressource en eau

8.1. Le SDAGE 2016-2021

Lors de la finalisation de ce dossier, le SDAGE 2016-2021 est entré en application le 20 décembre 2015 remettant en cause la délimitation des masses d’eau initialement en vigueur.

Le SDAGE de la Réunion a fait l’objet d’une révision et a été approuvé par arrêté n°09-3220/SG/DRCTV du 07 décembre 2009. L’élaboration du « projet de SDAGE » a été précédée par un « état des Comité de Bassin, fixe les orientations fondamentales d’une gestion globale et équilibrée de la ressource en eau ainsi que les objectifs de qualité et de quantité des eaux à atteindre, en 2015, conformément à la DCE.

Arrivé à son échéance de 2015, le Comité de Bassin, en séance plénière du 4 novembre 2015, a adopté le SDAGE 2016-2021 et donné un avis favorable au Programme de Mesures 2016-2021.

Les documents sont entrés en vigueur le 20 décembre 2015 lors de la publication des arrêtés d’adoption des SDAGE au JORF des 12 bassins de France.

Par ailleurs, la Directive Cadre sur l'Eau a créé la notion de masse d’eau comme étant une unité élémentaire pour laquelle sont définis :
- Un état du milieu ;
- Un objectif à atteindre, avec des dérogations éventuelles.

Une masse d’eau doit présenter une certaine homogénéité du point de vue des caractéristiques naturelles (pour que les conditions de référence y soient homogènes) et du point de vue des pressions exercées par les activités humaines (pour que l’état constaté y soit homogène).
Désormais la masse d'eau superficielle à laquelle appartient le captage de Grand Ruisseau est FRLR18 Cirque de Cilaos.

Cette masse d'eau regroupe quatre cours d'eau qui confluent vers le Bras de Cilaos (FRLR19) : le Bras de Saint Paul, le Bras Rouge, le Bras de Benjoin, et le petit Bras de Cilaos. Ces quatre confluent drainent les espaces naturels du Cirque de Cilaos. Le cours d'eau se rejette ensuite dans la mer sur la commune de Saint Louis, par l’intermédiaire du Bras de Cilaos (FRLR19) et de la Rivière Saint-Étienne (FRLR20).

La synthèse de la masse d'eau est présentée sur la fiche suivante.
FRLR18 : Cirque de Cilaos

Fiche de synthèse - FRLR18

<table>
<thead>
<tr>
<th>Code Masse d’eau</th>
<th>Libellé</th>
<th>Typologie</th>
<th>Surface du bassin-verseur (km²)</th>
<th>Longueur du bras principal (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRLR18</td>
<td>Cirque de Cilaos</td>
<td>Cirque sous le vent - réception</td>
<td>85</td>
<td>13,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>État chimique</th>
<th>Paramètre en cause</th>
<th>Niveau de confiance</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bon</td>
<td>Sans objet</td>
<td>Elevé</td>
<td>Dire d’experts</td>
</tr>
</tbody>
</table>

| État écologique | Physico-chimie | Faible |

Pressions

<table>
<thead>
<tr>
<th>Sources de pressions</th>
<th>Évaluation des impacts</th>
<th>Scénario tendanciel 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stations d’épuration</td>
<td>Non significatif</td>
<td></td>
</tr>
<tr>
<td>Installations industrielles</td>
<td>Non significatif</td>
<td></td>
</tr>
<tr>
<td>Autres sources significatives</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Population non raccordée au réseau d’eaux usées</td>
<td>Non significatif</td>
<td>Mise en place de SPANC</td>
</tr>
<tr>
<td>Eaux de ruissellement urbain</td>
<td>Inconnu</td>
<td>Mise en place du plan Ecophyto</td>
</tr>
<tr>
<td>Activités agricoles</td>
<td>Non significatif</td>
<td>Mise en place de débits réservés sur les prises Petit Bras et Grand Bras de Cilaos en 2011</td>
</tr>
<tr>
<td>Agriculture</td>
<td>Significatif</td>
<td>Mise en place de débits réservés sur les prises Petit Bras et Grand Bras de Cilaos en 2011</td>
</tr>
<tr>
<td>Production d’eau potable</td>
<td>Significatif</td>
<td></td>
</tr>
<tr>
<td>Activité industrielle</td>
<td>Non significatif</td>
<td></td>
</tr>
<tr>
<td>Électricité (refroidissement)</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Activités hydro-électriques</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Carrières</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Transferts d’eau</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Autres prélevements significatifs</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Altérations physiques des chenaux</td>
<td>Inconnu</td>
<td>Efficacité des passes à poissons à valider</td>
</tr>
<tr>
<td>Infrastructures routières en phase de travaux</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Barrages hydroélectriques</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
<tr>
<td>Pêche en eau douce</td>
<td>Non significatif</td>
<td></td>
</tr>
<tr>
<td>Pêche aux bichiques</td>
<td>Significatif</td>
<td></td>
</tr>
<tr>
<td>Braconnage</td>
<td>Significatif</td>
<td></td>
</tr>
<tr>
<td>Activité de pleine nature</td>
<td>Pas de pression identifiée</td>
<td></td>
</tr>
</tbody>
</table>

Pressions cause de risque

- Prélèvements
- Altérations physiques des chenaux
- Pêche aux bichiques sur FRLR20
- Braconnage

Risque de non atteinte des objectifs environnementaux

- RNAOE chimie : Non
- RNAOE écologique : Oui
- RNAOE global : Oui

Figure 16 : Fiche de synthèse de la masse d’eau FRLR18

Comité de Bassin de La Réunion - État des eaux 2013

pa(10)

35
Le SDAGE 2016-2021 se décline en 6 orientations fondamentales (OF) et une orientation de liaison avec le PGRI (Plan de Gestion des Risques Inondation) :

- OF 1 : préserver la ressource en eau dans l’objectif d’une satisfaction en continu de tous les usages et du respect de la vie aquatique en prenant en compte le changement climatique ;
- OF 2 : assurer la fourniture en continu d’une eau de qualité potable pour les usagers domestiques et adapter la qualité aux autres usages ;
- OF 3 : rétablir et préserver les fonctionnalités des milieux aquatiques ;
- OF 4 : lutter contre les pollutions ;
- OF 5 : favoriser un financement juste et équilibre de la politique de l’eau notamment au travers d’une meilleure application du principe pollueur-payeur ;
- OF 6 : développer la gouvernance, l’information, la communication et la sensibilisation pour une appropriation par tous des enjeux ;
- OF 7 en liaison avec le PGRI : lutter contre les inondations.

Le projet de captage de Grand Ruisseau s’intègre également dans l’orientation fondamental n°7 en lien avec le PGRI : lutter contre les inondations. L’objectif 3.7 du PGRI 2016-2021 porte sur la surveillance et intervention sur les cours d’eau et notamment la surveillance et la gestion des embâcles.

8.2. **Le SAGE**

Le cirque et la commune de Cilaos sont concernés par le Sage Sud.

La commission locale de l’eau a été créée par arrêté préfectorale du 23 juillet 2001 pour 6 ans.

Le SAGE Sud a été validé par arrêté préfectoral du 19 juillet 2006.

La définition du périmètre s’est basée sur une logique des usages de l’eau, intégrant ainsi les problématiques inhérentes à la gestion de l’eau :

- l’alimentation en eau potable et de fait la gestion des ressources,
- l’irrigation, notamment sur les périmètres des Bras de Cilaos et de La Plaine,
- la solidarité intercommunale.

Les orientations du SAGE sont les suivantes, suite au diagnostic des enjeux sur son périmètre :

- Orientation 1 : Répondre aux besoins en eau pour tous
 - L'orientation de ce SAGE est donc d’optimiser la gestion des usages et la répartition des ressources ;
 - Fiabiliser la qualité de la ressource distribuée ;
 - Ancrer une gestion quantitative solide ;
 - Promouvoir toutes les actions permettant une économie d'eau.

- Orientation 2 : Gérer et protéger les milieux
 - Améliorer la qualité de l'eau.
 - Maintenir un débit biologique minimum.
 - Respecter l'intégrité physique des milieux.
 - Protéger les milieux remarquables.
 - Gérer les données de l'eau et des milieux.

- Orientation 3 : Se préserver du risque d'inondation
 - Mieux évaluer les risques.
 - Ne pas aggraver les risques identifiés, voire réduire le débit de pointe de la crue à l’aval des cours d'eau.
 - Maintenir de bonnes conditions d'écoulement.

Afin de s’insérer dans l’orientation 2, la présente demande est faite dans le respect des contraintes de gestion et de protection des milieux aquatiques.
Figure 18 : Programme d'actions des orientations du SAGE SUD (1/2)
Figure 19 : Programme d’actions des orientations du SAGE SUD (2/2)
Observations sur l'utilisation du rapport

Ce rapport, ainsi que les cartes ou documents, et toutes autres pièces annexées constituent un ensemble indissociable ; en conséquence, l'utilisation qui pourrait être faite d'une communication ou reproduction partielle de ce rapport et annexes ainsi que toute interprétation au-delà des énonciations d'Antea Group ne sauraient engager la responsabilité de celle-ci. Il en est de même pour une éventuelle utilisation à d'autres fins que celles définies pour la présente prestation.

La prestation a été réalisée à partir d'informations extérieures non garanties par Antea Group ; sa responsabilité ne saurait être engagée en la matière.
Annexe 1. Plan projet – Caractéristiques techniques du captage Grand Ruisseau

(1 page)
vue en plan projet

POSITION

AVANT

APRÈS

coupe AA
ech:1/20

élévation
ech:1/20

rocher

rocher

rocher

rocher

coupe BB
ech:1/20

TABLEAU RECAPITULATIF

ALTITUDE: 1290 env
hauteur: 1.25 m
ep: 70cm
volume: 2.7m³
sortie réseaux ø110
section vanne vidange 0.43x0.41
section vanne débit réservé ø110
Annexe 2. Méthodologie et détail des calculs pour la détermination du débit réservé

(6 page)
Méthodologie pour l’évaluation des Débits réservés

Rappel de la réglementation

I. Tout ouvrage à construire dans le lit d’un cours d’eau doit comporter des dispositifs maintenant dans ce lit un débit minimal garantissant en permanence la vie, la circulation et la reproduction des espèces vivant dans les eaux au moment de l’installation de l’ouvrage ainsi que, le cas échéant, des dispositifs empêchant la pénétration du poisson dans les canaux d’amenée et de fuite.

Ce débit minimal ne doit pas être inférieur au dixième du module du cours d’eau en aval immédiat ou au droit de l’ouvrage correspondant au débit moyen interannuel, évalué à partir des informations disponibles portant sur une période minimale de cinq années, ou au débit à l’amont immédiat de l’ouvrage, si celui-ci est inférieur. Toutefois, pour les cours d’eau ou sections de cours d’eau présentant un fonctionnement atypique rendant non pertinente la fixation d’un débit minimal dans les conditions prévues ci-dessus, le débit minimal peut être fixé à une valeur inférieure.

La Circulaire du 5 juillet 2011 est venue préciser l’application de l’article L. 214-18 du code de l’environnement sur les débits réservés à maintenir en cours d’eau.

Ce débit minimum biologique doit être déterminé sur la base d’une étude spécifique dans le cadre de la procédure d’autorisation. Cette étude se doit d’analyser les incidences d’une réduction des valeurs de débit à l’aval de l’ouvrage sur les espèces vivant dans les eaux.

Elle doit donc tenir compte des besoins de ces espèces aux différents stades de leur cycle de vie ainsi que du maintien de l’accès aux habitats qui leur sont nécessaires.

Le débit minimum biologique fixé à l’ouvrage, ne doit pas être inférieur à une valeur plafond qui est pour la règle générale le 10ème du module interannuel du cours d’eau.

Conformément à la jurisprudence en vigueur, afin de satisfaire l’obligation principale de l’article L.214-18 du code de l’environnement de « garantir en permanence la vie, la circulation et la reproduction des espèces vivant dans les eaux », le débit minimum biologique peut être supérieur à cette valeur plafond du 10ème du module naturel. Le débit minimum biologique ne saurait donc être assimilé d’emblée au 10ème du module.

Dans la déclinaison de la circulaire du 05 juillet 2011, le Service Eau et Biodiversité de la DEAL de la Réunion a précisé les éléments de cadrage de description physique des cours d’eau permettant la détermination de la valeur du Débit minimum Biologique. 8 points y sont énumérés :

1. Caractérisation de la ressource disponible : régime hydrologique caractérisation des étiages (fréquence, durée, modalité d’alimentation, temps de réponse). Les conditions d’étiage naturelles sont à caractériser le plus finement possible afin de replacer les modifications hydrologiques par rapport à ces conditions.
2. Caractérisation des usages : types, volumes, répartition saisonnière,
3. Identification des "déséquilibres" en confrontant les deux points précédents : c'est une étape essentielle. Il s'agit de qualifier le degré de contrainte hydrologique imposée aux milieux aquatiques dans le cadre des usages existants (voir de leur développement futur). En effet, la valeur des débits minimums n’aura pas le même sens si l’on se trouve dans un contexte hydroélectrique ou dans un contexte d’AEP ou d’irrigation,
4. Identification des tronçons morphologiques des cours d’eau concernés et analyse de leur sensibilité à une réduction de débit (un secteur de gorge n’aura pas la même sensibilité qu’une zone en tresse),
5. Identification des enjeux écologiques (espèces concernées, stade de développement, migration),
6. Définition de stations d’étude représentatives à la fois des déséquilibres hydrologiques, des tronçons et des enjeux écologiques,
7. Mesures hydrauliques permettant d’évaluer l’évolution des paramètres hydrauliques et morphologiques (hauteur, vitesse, largeur mouillée) en fonction des débits.
8. Application éventuelle d’un "modèle" d’habitat dans le mesure où les préférences d'habitats des espèces sont bien identifiées et validées dans le respect des limites d'utilisation du modèle.

Détermination des débits réservés

Caractérisation de la ressource disponible : Méthodologie pour l’estimation des débits caractéristiques

Le débit caractéristique au captage n’est pas connu du fait de l’absence de station limnigraphique de suivi en continu sur la ravine interceptée. Les stations de mesures existantes du secteur de Cilaos ont fait ou font, dans le meilleur des cas, l’objet d’un suivi ponctuel et fournissent quelques valeurs de débit instantané insuffisantes pour définir de manière précise le débit caractéristique de la ressource captée.

Afin de définir le débit caractéristique du cours d’eau au niveau du futur captage Grand Ruisseau, les données suivantes ont été consultées :
- Données de l’office de l’eau ;
- Rapport Antea Group n° C25467 présentant l’étude de mise en place des débits réservés du Bras de Cilaos et du bras de la Plaine\(^1\).
- Dossier de régularisation des captages AEP de Cilaos, Antea Group 2015.

Différentes approches ont été mises en œuvre et les résultats obtenus ont été appréciés et critiqués sur la base des expertises de terrain et des informations recueillies.

* 1\(^{ère}\) méthode :

A partir des valeurs caractéristiques calculées sur le Grand Bras et le Petit Bras de Cilaos,

\(^{1}\) : Etude de mise en place des débits réservés du bras de Cilaos et du bras de la Plaine, réalisée pour la direction régionale de l’environnement, avril 2003, rapport C25467, ANTEA, HYDRETUDES et l’ARDA.
détectées lors de l’étude citée ci-dessus, les valeurs de débit spécifique (rapporté à 1km²) des deux grands bassins versants ont été établies.

Pour le Grand Bras de Cilaos, l’étude avait également défini la contribution au débit global, de chacun de ses trois affluents principaux, que sont le bras de benjoin, le bras rouge et le bras de Saint Paul.

Les valeurs de débits spécifiques ont donc été déterminées pour chacun des 3 sous bassins versants principaux.

Il a ainsi été retenu la valeur du Bras de Benjoin dans lequel se jette la ravine Kermeuguen. Cette valeur a été ensuite extrapolée à la superficie du bassin versant du futur captage Grand Ruisseau.

Il s’agit d’une approche établie uniquement au prorata des surfaces de bassin versant, sans tenir compte des caractéristiques intrinsèque de la ressource, ni de son environnement.

Le résultat obtenu est ensuite critiqué en analysant la concordance des valeurs calculées, avec des valeurs réelles disponibles.

- 2ème méthode :

Si à la vérification de la validité de la 1ère méthode, les débits calculés sont trop éloignés des débits mesurés disponibles et si la proportionnalité de la ressource à la surface du bassin versant n’est pas avérée, alors une deuxième méthode a été appliquée.

Les données ponctuelles disponibles sur le bassin versant de Cilaos, correspondant à des données en étioage, le Débit Caractéristique d’Étiage (DCE) au captage a été évalué à partir de la valeur moyenne des débits d’étioage disponibles dans la base de données de l’OLE, ce qui permet d’estimer un Débit d’étiage moyen.

A partir de cette valeur, nous avons estimé le module au captage, en extrapolant le rapport entre le DCE moyen et le Module disponible sur le Grand Bras de Cilaos d’abord au sous bassin versant principal puis au captage considéré.

<table>
<thead>
<tr>
<th>unité</th>
<th>Gd bras Cilaos</th>
<th>Bras de Benjoin</th>
<th>Bras Rouge</th>
<th>Bras de St Paul</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface bv km²</td>
<td>km²</td>
<td>69,35</td>
<td>20,7</td>
<td>28,9</td>
</tr>
<tr>
<td>% du cumul des 3 bras</td>
<td>%</td>
<td>100</td>
<td>45,4</td>
<td>29</td>
</tr>
</tbody>
</table>

Valeurs calculées
Projet de captage d’irrigation Grand Ruisseau - Commune de Cilaos – Dossier d’autorisation au titre du Code de l’Environnement

A79631/B

<table>
<thead>
<tr>
<th></th>
<th>m³/s</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q jour moy</td>
<td></td>
<td>2,31</td>
<td>1,049</td>
<td>0,670</td>
</tr>
<tr>
<td>DCEmoyen</td>
<td></td>
<td>0,73</td>
<td>0,331</td>
<td>0,212</td>
</tr>
<tr>
<td>DCEmini</td>
<td></td>
<td>0,57</td>
<td>0,259</td>
<td>0,165</td>
</tr>
</tbody>
</table>

Valeurs ajustées après prise en compte des données ponctuelles disponibles

<table>
<thead>
<tr>
<th></th>
<th>m³/s</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q moy étiage</td>
<td></td>
<td>0,36</td>
<td>0,23</td>
<td>0,2</td>
</tr>
<tr>
<td>Q spécif étiage</td>
<td></td>
<td>0,017</td>
<td>0,008</td>
<td>0,012</td>
</tr>
</tbody>
</table>

Tableau 6 : Données de référence simulées pour l’estimation des débits (source : Rapport Antea Group C25467)²

• 3ème méthode :

Dans les cas où ces deux premières méthodes ne donnaient pas de résultats cohérents, une approximation du module de la ravine a été faite, non plus à partir de données hydrologiques du cirque mais à partir des seules données au captage et des données pluviométriques en posant comme postulat que la ressource au captage bénéficie de deux types d’alimentation :
 - La part de ruissellement direct des pluies ;
 - un écoulement de base peu variable qui peut être évalué sur la base de mesures ponctuelles disponibles.

En effet, à partir des observations et de la connaissance de certaines sources de la Réunion suivies et étudiées en terrain ancien ou accidenté, il est estimé, que globalement seules les pluies journalières au-dessus de 50 mm contribuent directement au ruissellement. Cette part de ruissellement direct a été estimée à partir des pluies journalières de l’année 1994 sur la station de Cilaos, qui a été une année hydrologique moyenne de référence. Cette année de pluie avait également servi à la modélisation des débits du Grand Bras de Cilaos (rapport Antea Group n°C25467).

A Cilaos, la hauteur de pluie contribuant au ruissellement direct retenue en année moyenne est de 983,20mm/an. A l’échelle du bassin versant du captage, cette hauteur peut être convertie en volume à l’échelle annuelle puis en débit.

✔ Reste alors à déterminer le débit de base. En l’absence d’autres informations et sachant que les autres méthodes n’ont pas donné de résultats, on considère que : Le débit d’étiage (généralement mesuré par l’Office de l’Eau) provient de l’écoulement de base (résurgence des volumes infiltrés…) des ravines sans influence des précipitations.

✔ Le débit d’étiage étant estimé, on considère que la moyenne du débit de base d’écoulement, est alors globalement de 20% supérieure au débit d’étiage.

Une fois le débit de base moyen estimé, le module annuel est alors déterminé en

² Les cellules grisées correspondent aux données issues de "étude de mise en place des débits réservés du bras de Cilaos et du bras de la Plaine" (Antea, Hydretudes, Arda, rapport C25467, projet REUP010015)
sommant le débit de base moyen et le débit correspondant au volume de pluie contribuant au ruissellement direct au captage (part supérieure à 50mm/j).

Détermination des débits caractéristiques au captage

Données de débits disponibles

L’office de l’eau de la Réunion (OLE) a effectué un suivi du débit instantané dans la ravine Kerveguen, au lieu-dit Gros Ruisseau (station OLE n° 18068). Cette station de mesure se trouve sur le cours d’eau, à proximité du lieu où sera implanté le futur captage Grand Ruisseau.

Des mesures ont été réalisées entre 1985 et 2006 principalement en fin de période d’étiage.

L’étude de ces données ponctuelles permet de déterminer :
- Le débit minimal : 13,5 l/s, mesuré le 23/10/1996 ;
- Le débit maximal : 175 l/s, mesuré le 18/04/1985 ;
- Le débit moyen (moyenne des mesures disponibles) : 35 l/s ;
- Le débit moyen (moyenne des mesures disponibles en période d’étiage) : 25 l/s.

Débits caractéristiques

Les débits théoriques de la ravine (débit journalier moyen et débit caractéristique en période d’étiage) ont ainsi été calculés à partir des valeurs de débits spécifiques du Grand Bras de Cilaos et du Bras de Benjoin.

Les résultats obtenus pour le futur captage Grand Ruisseau par l’application de la 1ère méthode (pro rata des surfaces des bassins versants) sont présentés ci-après.

<table>
<thead>
<tr>
<th>unité</th>
<th>Gd bras Cilaos</th>
<th>Grand Ruisseau</th>
<th>Bras de Benjoin</th>
<th>Grand Ruisseau théorique (L/s) d’après Qspec Grand Bras de Cilaos</th>
<th>Grand Ruisseau théorique (L/s) d’après Qspec Bras de Benjoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>surface bv</td>
<td>km²</td>
<td>66,1</td>
<td>2,131</td>
<td>20,7</td>
<td>2,131</td>
</tr>
<tr>
<td>Q jour moy</td>
<td>m³/s</td>
<td>2,31</td>
<td>0,074</td>
<td>1,049</td>
<td>0,108</td>
</tr>
<tr>
<td>DCEmoyen</td>
<td>m³/s</td>
<td>0,73</td>
<td>0,024</td>
<td>0,331</td>
<td>0,034</td>
</tr>
<tr>
<td>DCEmini</td>
<td>m³/s</td>
<td>0,57</td>
<td>0,018</td>
<td>0,259</td>
<td>0,027</td>
</tr>
</tbody>
</table>

Tableau 7 : Estimation des débits moyen journalier (Q jour moy) et caractéristique en période d’étiage (DCE) au Grand Ruisseau par la 1ère méthode de calcul des débits
La pertinence de ces estimations est évaluée en comparant les débits estimés avec les débits mesurés par l’Office de l’eau.

La comparaison de ces valeurs est précisée dans le Tableau 8. Il apparaît que l’estimation du débit par la 1ère méthode donne des résultats acceptables en moyenne sur les 6 années disposant de mesures au pro rata du bassin versant du Bras de Benjoin.

Ceci se comprend aisément dans la mesure où la ravine Kerveguen est un affluent direct du Bras de Benjoin.

Tableau 8 : Comparaison des débits mesurés par l’OLE et des débits théoriques d’étiage estimés via la 1ère méthode

La comparaison de ces valeurs a également permis d’observer que le débit minimal mesuré par l’Office de l’eau en date du 13/11/2001 (année d’étiage record) est de 15,5 l/s.

Ces résultats, comparés aux données de suivi de l’OLE confirment que le DCE moyen peut être estimé selon la première méthode d’après le Bras de Benjoin.

Les débits caractéristiques ainsi retenus au futur captage Grand Ruisseau sont donc :

- $DCE_{moyen} = 34 \text{ l/s}$;
- $Q_{journalier\ moyen} = 110 \text{ l/s}$.

Détention du débit plancher

Conformément à la réglementation, le débit minimum biologique fixé à l’ouvrage, ne doit pas être inférieur à une valeur plancher qui est pour la règle générale le 10ème du module interannuel du cours d’eau.
Le débit moyen journalier du cours d’eau au futur captage Grand Ruisseau a été estimé à 110 l/s.

Afin de répondre à la réglementation en vigueur, le débit réservé ne devra pas être inférieur à 10% du débit moyen journalier, soit 11 l/s.

Caractérisation des usages :
L’inventaire des usages du cours d’eau a montré qu’aucun prélèvement n’est effectué sur la ravine Kerengu. Il n’existe que le captage du Grand Bras de Cilaos géré par la SAPHIR au Pavillon.

Identification des "déséquilibres"
Le captage du Bras de Cilaos est régulièrement autorisé pour un prélèvement de 1,1 m3/s en moyenne. La mise en service du captage de Grand Ruisseau va entraîner un prélèvement de 0.01 m3/s. En supposant une conservation de débit entre les deux captages, le prélèvement supplémentaire n’entraînera aucun déséquilibre.

Identification des tronçons morphologiques des cours d’eau concernés et Identification des enjeux écologiques.

Le contexte biologique de la zone du projet, notamment d’un point de vue de la continuité pour la migration des espèces de poissons et macro-crustacés a été dressé à partir des résultats de l’Evaluation de la continuité écologique des 13 rivières pérennes de la Réunion (DEAL / Groupement ANTEA-OCEA-ECOGEA-HYDRETUDES, 2012). L’étude « Typologie et sectorisation des cours d’eau de la Réunion » (Malavoi 1998) a également été utilisée pour établir le contexte général du cours d’eau (pente, typologie des écoulements). Elle a été complétée par la réalisation de profil en long pour le Bras de Benjoin et la Ravine Kerengu à partir de cartes IGN.

Des reconnaissances et mesures de terrain sont venues compléter cette analyse. La caractérisation de l’état initial dans la zone d’implantation du projet de captage, repose ainsi sur l’échantillonnage de deux stations. La première se trouve à l’emplacement du projet, la seconde se trouve sur le Bras de Benjoin en aval de la confluence avec la Ravine Kerengu.

L’inventaire de faune aquatique s’est appuyé sur l’échantillonnage de deux groupements. Les macro-invertébrés qui ont été échantillonnés au filet Surber Normalisé. Les poissons et macro-crustacés ont été échantillonnés par pêche électrique.

Le détail de l’ensemble de ces résultats figure dans le rapport d’intervention d’Océa Consult’ en annexe suivante.

Il en ressort qu’en raison de milieux favorables à la réalisation du cycle de total des macro-invertébrés et d’un peuplement actuel et récent présentant un intérêt patrimonial, les enjeux sur la Ravine Kerengu et le Bras de Benjoin sont fort pour ce groupement.

En revanche malgré des milieux favorables au grossissement et à la reproduction de
certain poissons et macro-crustacés, les enjeux pour ce groupement peuvent être qualifiés de faibles, en raison de la limitation de la colonisation par la cascade du Cap Noir.

Cependant la chevaquine était historiquement présente sur le secteur, elle peut potentiellement recoloniser la zone. Cette espèce possède de très fortes capacités de colonisation et de résilience, mais les cours d'eau du cirque du Cilaos sont très fréquemment braconnés, empêchant un développement régulier de cette faune.

En conclusion, les enjeux pour la faune aquatique sont limités aux invertébrés benthiques et à une recolonisation potentielle par la chevaquine A. serrata. Ces éléments ne permettent pas de statuer sur un débit biologique nécessaire. Il est en revanche important de maintenir les écoulements en eau toute ou partie de l'année en aval de l'ouvrage.

Il est donc proposé de limiter la détermination des débits minimum biologiques à cette étape et de retenir la valeur de débit plancher comme valeur de débit réservé.
Annexe 3. Rapport d’OCEA Consult - Etat de la continuité écologique et état initial des peuplements aquatiques

(17 page)
Estimation de l’impact du futur captage Grand Ruisseau sur la continuité biologique du cours d’eau
Sommaire

1. CONTEXTE DE L’EXPERTISE 3
2. LOCALISATION DU PROJET 3
3. METHODOLOGIE 4
 3.1. État de la continuité écologique sur la Rivière Saint-Etienne, le Bras de Cilaos, le Bras de Benjoin et la Ravine Kervégen 4
 3.2. Inventaires de la faune aquatique 5
 3.2.1. Inventaire des invertébrés benthiques 5
 3.2.1. Inventaire des espèces de poissons et de crustacés 6
4. RESULTATS 7
 4.1. État de la continuité écologique sur la Rivière Saint-Etienne, le Bras de Cilaos, le Bras de Benjoin et la Ravine Kervégen 7
 4.1.1. Profil en long du cours d’eau 7
 4.1.1. Obstacles à la continuité écologique 9
 4.2. État initial des peuplements aquatiques 10
 4.2.1. Description des habitats disponibles 10
 4.2.2. Peuplement de macro-invertébrés 11
 4.2.3. Peuplement de poissons et macro-crustacés 13
5. SYNTHESE DES ENJEUX MILIEUX ET FAUNE AQUATIQUE 13
6. BIBLIOGRAPHIE 15
Liste des tableaux

TABLEAU 1 - DESCRIPTION DES MILIEUX SUR LA RAVINE KERVEGUEN ET LE BRAS DE BENJOIN (* TYPOLOGIE DE MALAVOI) 10

Liste des figures

FIGURE 1 - LOCALISATION DU PROJET DE CAPTAGE. .. 3
FIGURE 2 - LOCALISATION DES STATIONS D’INVENTAIRES ... 5
FIGURE 3 - PRELEVEMENT DE MACRO-INVERTEBRES AU FILET SURBER.. 6
FIGURE 4 - PECHE ELECTRIQUE AVEC UN PORTEUR D’APPAREIL ET DEUX EPUISETTES ... 6
FIGURE 5 - PROFIL EN LONG DE LA RIVIERE SAINT-ETIENNE ET DU BRAS DE CILAOS (MALAVOI, 2002) 7
FIGURE 6 - PROFIL EN LONG DU BRAS DE BENJOIN (BLEU) ET DE LA RAVINE KERVEGUEN (ROUGE) 8
FIGURE 7 – CHUTE DE CAP NOIR SUR LE BRAS DE BENJOIN (GRPT ANTEA / OCEA / HYDRETUDES / ECOGEA, 2011) ... 9
FIGURE 8 - CASCADES (A GAUCHE) ET CHEVELU RACINAIRE (A DROITE), HABITAT TYPE POUR LA CHEVAQUINE SUR LA RAVINE KERVEGUEN ... 10
FIGURE 9 - ZONE DE FRAYERE POTENTIELLE A CABOT BOUCHE RONDE SUR LA RAVINE KERVEGUEN (A GAUCHE) ET RADIER SUR LE BRAS DE BENJOIN (A DROITE) ... 11
FIGURE 10 - PREFERENCES HYDRAULIQUES DES TAXONS RECENSES SUR LA RAVINE KERVEGUEN ET LE BRAS DE BENJOIN (LIMNOPHILE : ESPECE INFEODEE AUX EAUX CALMES, NR : NON RENSEIGNE, RHEOPHILE : ESPECE INFEODEE AUX ZONES DE FORTES VITESSES, UBIQUISTE : SANS PREFERENCE) .. 12
FIGURE 11 - SYNTHESE DES ENJEUX MILIEUX ET FAUNE AQUATIQUES A PROXIMITE DU PROJET DE CAPTAGE . 13
1. Contexte de l’expertise

Pour l’adduction à destination de l’irrigation, la commune dispose du réservoir le Brûlé Marron, à 1170 m d’altitude. Dans le cadre d’une sécurisation (augmentation) de ses besoins pour cet usage, la commune de Cilaos souhaite étudier la faisabilité administrative d’un nouveau point de captage sur la ravine Kervégen (1306 m d’altitude), qui viendrait alimenter ce réservoir.

2. Localisation du projet

Le site d’implantation du projet de captage se trouve sur la Ravine Kervégen à une altitude de 1 306 m et une distance à l’océan de 32,0 km (UTM UPS, WGS 84, x : 342 981 ; y : 7 662 867). Le site retenu se trouve dans un contexte forestier.

Figure 1 - Localisation du projet de captage.
3. Méthodologie

3.1. Etat de la continuité écologique sur la Rivière Saint-Etienne, le Bras de Cilaos, le Bras de Benjoin et la Ravine Kervégen

Rappel : Les espèces de poissons et macro-crustacés indigènes de la Réunion sont toutes diadromes. Afin de réaliser leur cycle de vie complet elles effectuent des migrations en le milieu marin et les rivières qu’elles peuvent coloniser jusqu’à plus de 1 100 m d’altitude (Commune des Avirons/ANTEA/OCEA Consult’ 2010). Un obstacle naturel (de type chute par exemple) ou anthropique (de type barrage par exemple) peut limiter leur progression en fonction de leurs capacités de franchissement.

Le contexte biologique de la zone du projet, notamment d’un point de vue de la continuité pour la migration des espèces de poissons et macro-crustacés a été dressé à partir des résultats de l’Evaluation de la continuité écologique des 13 rivières pérennes de la Réunion (DEAL / Groupement ANTEA-OCEA-ECOGEA-HYDRETUDES, 2012). L’expertise de la continuité a porté sur 7 groupements d’espèces :

- **Groupe 1** – espèces sans adaptation au franchissement : les Eleotridae ou cabots noirs, *Stenogobius polyzona* le cabot rayé et *Awaous commersoni* la loche, qui ont des capacités de franchissement limitées,
- **Groupe 2** – mulet d’eau douce : le chitte, *Agonostomus telfairii* qui peut franchir des obstacles par saut
- **Groupe 3** – poissons plats : les Kuhlidae ou poissons plats (*Kuhlia* sp.) qui peuvent également franchir les obstacles par saut sans être aussi efficaces que le chitte,
- **Groupe 4** – bouche-rondes : les cabots bouches-rondes *Sicyopterus lagocephalus* et *Cotylopus acutipinnis* qui ont des capacités de franchissement élevées, ils peuvent remonter des cascades par ventousage (ventouse formée par la fusion des nageoires pelviennes) ;
- **Groupe 5** - anguilles : les anguilles *Anguilla* sp. qui peuvent franchir des obstacles par reptation ou en se collant aux parois par tension superficielle (civelles et anguillottes) ;
- **Groupe 6** – chevaquine : la chevaquine *Atyoida serrata* qui est l’espèce avec les capacités de franchissement les plus élevées (marche en zone humide, espèce observée en amont de cassés de plus de 300 m de hauteur, EDF-OCEA, 2013),
- **Groupe 7** – crustacés hors chevaquine : la chevrette, l’écrevisse et le camaron *Macrobrachium* sp., et le crabe d’eau douce *Varuna letterata* qui possèdent des aptitudes à la marche en berge ou en zone humide mais inférieures à celles de la chevaquine.

Pour chaque groupe une note de franchissabilité de chaque obstacle a été déterminée :

- 1 : barrière franchissable,
- 2 : barrière partielle à impact modéré,
- 3 : barrière partielle à fort impact,
- 4 : barrière totale ou quasi-totale.

L’étude « Typologie et sectorisation des cours d’eau de la Réunion » (Malavoi 1998) a également été utilisée pour établir le contexte général du cours d’eau (pente, typologie des écoulements). Elle a été complété par la réalisation de profil en long pour le Bras de Benjoin et la Ravine Kervéguen à partir de cartes IGN.
3.2. Inventaires de la faune aquatique

La caractérisation de l’état initial dans la zone d’implantation du projet de captage, repose sur l’échantillonnage de deux stations. La première se trouve à l’emplacement du projet, la seconde se trouve sur le Bras de Benjoin en aval de la confluence avec la Ravine Kervéguen.

![Localisation des stations d’inventaires.](image)

L’inventaire de faune aquatique s’est appuyé sur l’échantillonnage de deux groupements. Les macro-invertébrés qui ont été échantillonnés au filet Surber Normalisé. Les poissons et macro-crustacés ont été échantillonnés par pêche électrique.

3.2.1. Inventaire des invertébrés benthiques

Pour les macro-invertébrés, un prélèvement aléatoire de 6 points par station a été réalisé. La procédure d’échantillonnage est la suivante : L’opérateur positionne le filet sur le fond face à l’écoulement et recueille les 5 premiers centimètres de substrat. L’échantillon est trillé une première fois sur site de façon à éliminer les plus gros éléments de substrat ou de débris. La faune et les petits éléments de substrat et de débris sont ensuite fixés à l’éthanol à 90°. Le tri et l’identification des taxons est fait en laboratoire sous loupe binoculaire.
3.2.1. Inventaire des espèces de poissons et de crustacés

Pour les poissons et les macro-crustacés, le cours a été prospecté par pêche électrique grâce à un appareil portatif sur batteries de type IG200-2 d’Hans Grassl. Deux stratégies d’inventaire ont été utilisées en fonction de la dimension des milieux :

- Sur la Ravine Kervéguen en raison d’une largeur relativement faible la stratégie de pêche totale à un passage a été retenue. Elle consiste à prospector toute la largeur mouillée du cours sur un linéaire donné,
- Sur le Bras de Benjoin, l’échantillonnage a été réalisé par Echantillonnage Ponctuel d’Abondance (EPA). Cette méthode consiste à échantillonner des points d’environ 2 m² avec un effort de pêche de 30 s. 30 EPA répartis en quinconce sur le cours d’eau ont été échantillonnés.

Les stations inventoriées ont été décrites : largeur, longueur, type d’écoulement.
4. Résultats

4.1. Etat de la continuité écologique sur la Rivière Saint-Etienne, le Bras de Cilaos, le Bras de Benjoin et la Ravine Kervégen

4.1.1. Profil en long du cours d’eau

Le profil en long de la Rivière Saint-Etienne et du Bras de Cilaos ne met en évidence aucune rupture de pente qui pourrait expliquer une structuration des peuplements de poissons et macro-crustacés, notamment une limitation de la montaison des espèces colonisant les plus hautes altitudes. De la zone la plus aval jusqu’à une altitude de 250 m et une distance à la mer de 15,11 km la pente est faible est constante (16,7°/°°). Au-delà et jusqu’à la confluence de 3 Bras, elle s’accentue mais reste relativement moyenne (26,5°/°°).

Le projet de captage est situé sur le bassin versant du Grand Bras de Cilaos qui naît de la confluence des 3 bras : Bras de Benjoin, Bras de Saint Paul et Bras Rouge qui prennent leur source au pied du Piton des Neiges. La ravine Kervéguen est un affluent du Bras de Benjoin. Le Grand Bras de Cilaos conflue avec le Petit Bras de Cilaos à Pavillon pour former le Bras de Cilaos. Ce dernier conflue avec le Bras de La Plaine au niveau du Ouaki pour former la rivière Saint Etienne.

Sur la partie basse du bassin versant, la pente varie peu jusqu’à une distance d’environ 15,2 km à l’océan. Au-delà, elle s’accentue 26,5°/°° jusqu’à 23 km de l’océan avant de devenir forte à très forte 43°/°° à 126°/°° en amont de la confluence des trois Bras (Saint Paul, Rouge, et Benjoin).

Figure 5 - Profil en long de la Rivière Saint-Etienne et du Bras de Cilaos (Malavoi, 2002).
Comme le montre le profil en long du Bras de Benjoin (page suivante), la pente est relativement forte (58,8°/°°) en amont de la confluence de Trois Bras et jusqu’à une altitude de 580 m et une distance à l’océan de 25,2 km. Au-delà et jusqu’au pied de la Cascade de Cap Noir, la pente est très forte (166,2 °/°°). La chute du Cap Noir est estimée à 30 ou 40 m de hauteur. Elle constitue une barrière naturelle limitant fortement la colonisation des espèces de poissons et de crustacés diadromes.

En amont de la cascade et jusqu’à la confluence entre le Bras de Benjoin et la Ravine Kervéguen, la pente diminue tout en restant relativement forte (80,4 °/°°).

Sur le tronçon de la Ravine Kervéguen où est implanté le projet de captage, la pente du cours d’eau est très forte (180,5 °/°°). Celle-ci se maintient jusqu’à une altitude de 1360 m pour une distance à mer de 32,2 km. En amont la pente est forte (51,7 °/°°) avant de devenir extrême à partir de 1400 m et 33,0 km de distance à l’océan (rempart du cirque de Cilaos au pied du Piton des Neiges : 634,9°/°°).

Figure 6 - Profil en long du Bras de Benjoin (bleu) et de la Ravine Kervéguen (rouge).
4.1.1. **Obstacles à la continuité écologique**

Le tableau ci-après liste l’ensemble des obstacles à la montaison des poissons et macro-crustacés en aval du projet de captage (DEAL, 2012).

Plusieurs obstacles sont recensés sur la partie basse et médiane du cours d’eau. Le Captage du Grand Bras de Cilaos au Pavillon (377 m d’altitude) perturbe très significativement la colonisation du bassin versant par la faune migratrice : c’est une barrière à très fort impact ou quasi-totale selon les groupes d’espèces.

En amont de cet ouvrage, la cascade du Cap Noir se situe hors d’aire de colonisation des mulets, des poissons plats, des poissons sans capacités particulières de franchissement et des macro-crustacés autres que la chevaquine. Elle se comporte comme une barrière totale ou quasi-totale pour les cabots bouche-rondes et les anguilles. Même si elle est une barrière partielle à fort impact pour la chevaquine *Atyoida serrata*, seule celle-ci est susceptible de coloniser la zone du projet de captage.

<table>
<thead>
<tr>
<th>Nom obstacle</th>
<th>Pécherie bichiques</th>
<th>Piste Carriers RSE</th>
<th>Radier du Ouaki</th>
<th>Captage Grand Bras</th>
<th>Cascade du Cap Noir</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifiant</td>
<td>11_P_01</td>
<td>11_R_01</td>
<td>11_R_02</td>
<td>11_C_02</td>
<td>-</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>0</td>
<td>7</td>
<td>130</td>
<td>377</td>
<td>700</td>
</tr>
<tr>
<td>Distance à la mer (km)</td>
<td>0</td>
<td>0,7</td>
<td>6,9</td>
<td>19,7</td>
<td>25,9</td>
</tr>
<tr>
<td>Hauteur de chute (m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9,8</td>
<td>30 - 40 m</td>
</tr>
<tr>
<td>Grp 1 – espèces sans adaptation au franchissement</td>
<td>2</td>
<td>1 - 75%</td>
<td>2</td>
<td>4</td>
<td>HC</td>
</tr>
<tr>
<td>Grp 2 – mulet</td>
<td>1</td>
<td>1 - 73 %</td>
<td>1</td>
<td>4</td>
<td>HC</td>
</tr>
<tr>
<td>Grp 3 – poissons plats</td>
<td>1</td>
<td>1 - 72 %</td>
<td>1</td>
<td>4</td>
<td>HC</td>
</tr>
<tr>
<td>Grp 4 – bouche-rondes</td>
<td>4</td>
<td>1 - 84 %</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Grp 5 – anguilles</td>
<td>2</td>
<td>1 - 85 %</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Grp 6 – chevaquine</td>
<td>1</td>
<td>1 - 88 %</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Grp 7 – crustacés hors chevaquine</td>
<td>1</td>
<td>1 - 84 %</td>
<td>2</td>
<td>4</td>
<td>HC</td>
</tr>
</tbody>
</table>

Figure 7 – Chute de Cap Noir sur le Bras de Benjoin (Grpt ANTEA / OCEA / HYDRETUDES / ECOGEA, 2011)

Figure 8 - Continuité écologique au droit des obstacles à la montaison sur la Rivière Saint-Etienne et le Bras de Cilaos, 1 : barrière franchissable, 2 : barrière partielle à impact modéré, 3 : barrière partielle à fort impact, 4 : barrière totale ou quasi-totale, HC : Hors d’aire de colonisation. Piste de carriers RSE : % d’observations de franchissabilité sur la période 2012-2014 (DEAL 2012, OCEA-LAFARGE 2015).
L’analyse des profils en long des cours d’eau concernés, des obstacles anthropiques et naturels observés a montré que seule la chevaquine *Atyoida serrata* est susceptible de coloniser les milieux à proximité du projet de captage: la cascade du Cap Noir constitue une limite naturelle de colonisation des poissons sur le Bras de Benjoin (présence possible mais rare de poissons indigènes en amont).

4.2. **Etat initial des peuplements aquatiques**

4.2.1. *Description des habitats disponibles*

Sur la Ravine Kervéguen et le Bras de Cilaos les écoulements dominants sont de type lotique (100% du linéaire pour le premier cours d’eau et 76% pour le second) : cascades, radier et plat courant. Pour la ravine Kervéguen des zones calmes à une échelle inférieure à celle du faciès (micro-habitat) ont été observées. Pour le groupement des macro-invertébrés une dominance de taxons rhéophiles (qui aime le courant) est attendue.

Les deux stations décrites présentent des zones favorables aux cabots bouche-rondes *Sicyopterus lagocephalus* et *Cotylopus acutipinnis* (zone de granulométrie fine gravier/sable avec quelques pierres et blocs qui sont utilisés comme substrat de ponte). De plus les milieux observés seraient également favorables pour la croissance de ces poissons mais aussi de la chevaquine *Atyoida serrata* : zones de cascades très oxygénées, systèmes racinaires en berges.

<table>
<thead>
<tr>
<th>Type de Faciès*</th>
<th>Bras de Benjoin</th>
<th>Ravine Kervéguen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Longueur (m)</td>
<td>% longueur</td>
</tr>
<tr>
<td>Bordure</td>
<td>14,85</td>
<td>17%</td>
</tr>
<tr>
<td>Cascades</td>
<td>40,36</td>
<td>46%</td>
</tr>
<tr>
<td>Plat</td>
<td>6,35</td>
<td>7%</td>
</tr>
<tr>
<td>Plat courant</td>
<td>11,3</td>
<td>13%</td>
</tr>
<tr>
<td>Radier</td>
<td>14,45</td>
<td>17%</td>
</tr>
<tr>
<td>Total</td>
<td>87,31</td>
<td>100%</td>
</tr>
<tr>
<td>Zone de frayères à bouche-rondes</td>
<td>Oui</td>
<td>Oui</td>
</tr>
</tbody>
</table>

Tableau 1 - Description des milieux sur la Ravine Kervéguen et le Bras de Benjoin (* typologie de Malavoi*)

Figure 9 - Cascades (à gauche) et chevelu racinaire (à droite), habitat type pour la chevaquine sur la Ravine Kervéguen
4.2.2. *Peuplement de macro-invertébrés*

Le tableau ci-après présente la liste faunistique des taxons recensés sur la Ravine Kervéguen et le Bras de Benjoin:

<table>
<thead>
<tr>
<th>Taxons</th>
<th>Préférences hydrauliques*</th>
<th>Répartition*</th>
<th>Benjoin</th>
<th>Kervéguen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annélides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huridinae</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous total Annélides</td>
<td></td>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Insectes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lépidoptères</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eoophila sp.</td>
<td>limnophile</td>
<td>NR</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Diptères</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomini</td>
<td>ubiquiste</td>
<td>large</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Limnophora sp. 1</td>
<td>ubiquiste</td>
<td>large</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Orthocladinae</td>
<td>rhéophile</td>
<td>large</td>
<td>155</td>
<td>91</td>
</tr>
<tr>
<td>Simulidae</td>
<td>rhéophile</td>
<td>large</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Tanytarsini</td>
<td>limnophile</td>
<td>large</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Tipula spp.</td>
<td>NR</td>
<td>rare</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nymphé</td>
<td>NR</td>
<td>NR</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Hétéroptères</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhogovelia infernalis inf.</td>
<td>NR</td>
<td>large</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trichoptères</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche mokaensis</td>
<td>rhéophile</td>
<td>large</td>
<td>18</td>
<td>22</td>
</tr>
<tr>
<td>Hydroptila grucheti</td>
<td>limnophile</td>
<td>large</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Hydroptila sp.</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Hydroptila starmühelneri</td>
<td>rhéophile</td>
<td>alt > 250 m</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Trichoptère indéterminé</td>
<td>NR</td>
<td>NR</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sous total Insectes</td>
<td></td>
<td></td>
<td>206</td>
<td>219</td>
</tr>
<tr>
<td>Oligochètes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sous total Oligochètes</td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Mollusques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afrogyrus rodriguezensis</td>
<td>limnophile</td>
<td>large</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Lymnaea truncatula</td>
<td>limnophile</td>
<td>abondante dans les cirques</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Physella acuta</td>
<td>limnophile</td>
<td>large</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Sous total Mollusques</td>
<td></td>
<td></td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>TOTAL INDIVIDUS</td>
<td></td>
<td></td>
<td>243</td>
<td>231</td>
</tr>
</tbody>
</table>

La richesse observé à l’échelle des deux stations (12 points), 17 taxons, est relativement faible par rapport à celle observé dans le cadre du Réseau de Contrôle et Surveillance 2013 sur la station Benjoin (RCS, 38 taxons Office de l’eau/BIOTOPE 2014). Cette différence est à relativiser compte tenu de la période où l’inventaire a été mené. En effet, les peuplements de macro-invertébrés sont plus abondants et plus riches à l’été qu’à la fin de la saison des pluies où de nombreuses crues ont pu perturber les peuplements (Commune de Saint-Denis/ OCEA Consult’ 2015).

A l’exception de Tipula spp., taxon rare (3 individus recensé sur le Bras de Benjoin), les autres taxons observés se caractérisent par une large distribution ou sont caractéristiques des zones d’altitude et des cirques.

Comme le montre la figure ci-après, qui regroupe les deux stations, le peuplement de la zone à proximité du captage sur la Ravine Kervéguen et le Bras de Benjoin est dominé par les taxons rhéophiles (espèce inféodée aux zones de fortes vitesses). Ce genre de peuplement pouvait être attendu en raison des fortes à très fortes pentes observées sur secteur. Les espèces limnophiles (qui aime les eaux calmes) sont présentes sur la zone à la faveur des vasques de réception des cascades et sur les faciès plats (Bras de Benjoin).

Figure 11 - Préférences hydrauliques des taxons recensés sur la Ravine Kervéguen et le Bras de Benjoin (limnophile : espèce inféodée aux eaux calmes, NR : non renseigné, rhéophile : espèce inféodée aux zones de fortes vitesses, ubiquiste : sans préférence)
4.2.3. Peuplement de poissons et macro-crustacés

Aucun poisson ou macro-crustacés indigène n’a été capturé malgré la présence historique de chevaquine (source personnel accompagnant de la mairie de Cilaos). Bien que la station Benjoin soit sur un tronçon régulièrement aléviné par la Fédération de pêche aucune truite arc-en-ciel Oncorhynchus mykiss n’a été recensée.

Les macro-invertébrés du Bras de Benjoin et de la Ravine Kervéguen présentent des enjeux patrimoniaux avec la présence sur le secteur de 5 taxons rares et un endémique de la Réunion. Bien que le peuplement de poissons et macro-crustacés soit inexistant actuellement dans la zone du projet, les milieux sont favorables à l’installation et à la reproduction des cabots bouche-rondes et de la chevaquines.

5. Synthèse des enjeux milieux et faune aquatique

En raison de milieux favorables à la réalisation du cycle de total des macro-invertébrés (espèces avec phase de vie aérienne et strictement aquatique) et d’un peuplement actuel et récent présentant un intérêt patrimonial, les enjeux sur la Ravine Kervéguen et le Bras de Benjoin sont fort pour ce groupement.

Malgré des milieux favorables au grossissement et à la reproduction de certains poissons et macro-crustacés, les enjeux pour ce groupement peuvent être qualifiés de faibles, en raison de la limitation de la colonisation par la cascade du Cap Noir. Cependant la chevaquine était historiquement présente sur le secteur, elle peut potentiellement recoloniser la zone. Cette espèce possède très fortes capacités de colonisation et de résilience, mais les cours d’eau du cirque du Cilaos sont très fréquemment braconnés, empêchant un développement régulier de cette faune.

<table>
<thead>
<tr>
<th>Désignation</th>
<th>Enjeux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milieux</td>
<td></td>
</tr>
<tr>
<td>Établissement et maintien d’un peuplement de macro-invertébrés</td>
<td>Fort : typologie des milieux dans une zone forestière relativement préservée favorable au développement des peuplements de macro-invertébrés</td>
</tr>
<tr>
<td>Grossissement de poissons et macro-crustacés</td>
<td>Faible : colonisation naturellement limité par la cascade du Cap Noir pour les poissons, seule la chevaquine Atyoida serrata est susceptible de coloniser le secteur.</td>
</tr>
<tr>
<td>Reproduction de poissons et macro-crustacés</td>
<td>Faible : Malgré la présence de zone de frayère à cabots bouche-rondes colonisation naturellement limité par la cascade du Cap Noir pour les poissons, les enjeux sont potentiels pour la chevaquine Atyoida serrata</td>
</tr>
<tr>
<td>Faune observée</td>
<td></td>
</tr>
<tr>
<td>Macro-invertébrés</td>
<td>Fort : présence de taxons patrimoniaux dont un endémique de la Réunion</td>
</tr>
<tr>
<td>Poissons et macro-crustacés</td>
<td>Faibles : actuellement inexistant mais potentiel pour la chevaquine Atyoida serrata</td>
</tr>
<tr>
<td>Synthèse</td>
<td>Fort pour les macro-invertébrés, faible pour les poissons et macro-crustacés avec un potentiel pour la chevaquine Atyoida serrata</td>
</tr>
</tbody>
</table>

Figure 12 - Synthèse des enjeux milieux et faune aquatiques à proximité du projet de captage
En conclusion, les enjeux pour la faune aquatique sont limités aux invertébrés benthiques et à une recolonisation potentielle par la chevaquine *A. serrata*. Ces éléments ne permettent pas de statuer sur un débit biologique nécessaire. Il est en revanche important de maintenir les écoulements en eau toute ou partie de l’année en aval de l’ouvrage.

Enfin, le seuil de captage aura un impact sur la continuité biologique : continuité faune invertébrée et potentiellement sur la chevaquine si recolonisation. Dans ces conditions, il apparaît important que le seuil ne soit pas un obstacle à la continuité biologique. Il devra être équipé d’une rampe rustique "faune aquatique" permettant le franchissement des crustacés, mollusques, et la dévalaison de tous types de faune aquatique (flux d’individus et de gènes).
6. Bibliographie

Commune des Avirons/ANTEA-OCEA Consult’, 2010, Régularisation des captages AEP de la commune des Avirons

Commune de Saint-Denis/OCEA Consult’, 2015, Régularisation du captage du Chaudron : Volet débit minimum biologique

DEAL / Groupement ANTEA-OCEA Consult’-ECOGEA-HYDRETUDES, 2012, Etude continuité biologique des 13 rivières pérennes de la Réunion

Projet de captage d’irrigation Grand Ruisseau - Commune de Cilaos – Dossier d’autorisation au titre du Code de l’Environnement

A79631/B
Rapport

Numéro et indice de version : A79631/B

Date d'envoi : Mars 2017
Nombre de pages : 39

Diffusion (nombre et destinataires) :
7 ex. Client
1 ex. Agence
1 ex. Auteur

Client

Coordonnées complètes :
Mairie de Cilaos
66, rue du Père Boiteau – 97413 Cilaos
Téléphone : 0262 31 89 89
Télécopie : 0262 31 25 44

Nom et fonction des interlocuteurs : Monsieur PHILAGOR

Antea Group

Unité réalisatrice : EREU

Nom des intervenants et fonction remplie dans le projet :
Interlocuteur commercial : Eric ANTEMI
Responsable de projet : Eric ANTEMI
Expert technique : Lynn LUTTRINGER, Florent JACQUIN
Secrétariat : Cynthia CLAIN

Qualité

Contrôlé par : Eric ANTEMI
Date : Mars 2017 – Version A

N° du projet : REUP140018
Références et date de la commande : BC 150254 du 05/02/2015

Mots clés : Irrigation, captage, Cilaos, Environnement,